

International Conference on Hydropower and Dams or Water and Energy Security – Under Cha

Development for Water and Energy Security – Under Changing Climate 7-9 April, 2022 Rishikesh

NEED FOR STORAGE DAMS FOR WATER SECURITY

J. Chandrashekhar lyer

Member (Design & Research), Central Water Commission & Ex-officio Additional Secretary to Government of India Department of Water Resources, RD & GR, Ministry of Jal Shakti

Indian Water Resources Scenario

(Source: CWC and NRSC combined reassessment study report (2019))

Spatial & Temporal Variation of Rainfall

Precipitation during June to September 3000 BCM (75%)

Rainfall in mm				
Avg.	1,170 All India			
Max.	11,000	Mawsynram, Meghalaya		
Min.	Min. 100 Western Rajasthan			

Availability Vs Demand

75% dependable inflows and demands (Typical)

Without storage, difficult to meet the consumptive demands for the whole year from the rainfall that occurs in just about 100-150 hours per year. Even Kharif season flows vary a lot on day to day basis. Without the backup of storage, even Kharif crop is not secured.

CREATION OF STORAGES IN INDIA

SI No.	Item	Capacity (BCM)
1	Storages already created	253.388
2	Projects under construction	50.959
	Total	304.348

LARGE DAMS IN UTRER TAJIRISTATINDIA

ENISTAN

Stand amaider and the DIA	a star of	
Kabul	STATE	No. Dams
Turat GAFGHANISTAN Islamabad P TIBET	Maharashtra	2394
The S IRAN 5 5 2 200	Madhya Pradesh	906
PAKISTAN NEPAL	Gujarat	632
New Delhi Bhu	Chhattisgarh	258
work 2 2 Ratimandu)	Karnataka	232
Abu Dhabi BANG	Rajasthan	212
Binth U.A.E. Muscat	Odisha	204
Madian Mada	Telangana	184
SAUUT OMAN Nagour Reigur Cente	Andra Pradesh	166
Autoritation and Autoritation and Autoritation	Uttar Pradesh	130
Marries Par Tandana (P	Tamil Nadu	118
Poora Hyderabad Vishakhapatnam	Jharkhand	79
YEMEN Vijavowišta	Kerala	61
	West Bengal	30
Cheonal	Bihar	26
Aleran Martin	Uttarakhand	25
Bengaluru Bangalore Buducheny	Himachal Pradesh	20
combatore•	Jammu &	
Kozni	Kashimir	17
	Punjab	16
Thiovananthapuram	Other States	35
SRI LANKA	TOTAL	5745

TIN

CAMBODI

LARGE DAMS WITH ECONOMY SIZE WORLDWIDE (TOP 8)

1.1.1

Per Capita Storage

Per Capita Water Availability(National Average)

Sector-wise Future Demand Scenario (BCM)

Sector	Probable Water Demand as Projected by NCIWRD (1999)		
	2025	2050	
Irrigation	611	807	
Domestic	62	111	
Industry	67	81	
Energy	33	70	
Others	70	111	
Total	843	1180 *	

* Against utilizable water resources of 1121 BCM

Drought prone area

- Every year almost all the reservoirs in India approach minimum live storage levels during May and June.
- The meagre storages available in May and June, about 10% of the live storage capacity, are just adequate for drinking and pre-sowing / nursery preparations.
- Success of Kharif and Rabi irrigation depends upon inflows during June – October period.
- The successive droughts worsens the situation leading to famines.

68% of cropped area is vulnerable to drought33% - Chronically drought-prone35% - Drought prone

Flood Prone Area

Flood Moderation in DVC System

FLOOD MODERATION OF 1973 MAJOR FLOOD

Pre and Post Tehri flow pattern at Rishikesh

Tehri dam commissioned in July 2006, Multipurpose project (3.54 BCM Gross, 2.615 BCM live storage, provision of 2.70 lakh ha additional irrigation, stabilization of 6.04 lakh ha command in U.P., Drinking water 162 MGD to Delhi, 108 MGD to U.P., 1000 MW power

Flood mitigation by Tehri dam during 2013 flood

Tehri dam mitigated flood peak by 7000 cumec and saved Rishikesh and Haridwar from flood devastation

Comparison

Key Benefits	Large Storage	Small Storage	ArRe/RWH
Flood Moderation	Yes	Little or none	None
Spatial variability	Yes	Little or none	None
Temporal Variability	Yes	Little or none	Little
Cost per unit storage	Medium	High/ Medium	Low
Land per unit storage	Moderate	High/ Moderate	Low
Evaporation Loss (%)	Low	High	
Irrigation benefits	2 or 3 crop	1 crop	
Hydropower	Yes	No	None
Drought Resilience	High	Little	Little
Support for e-flows	Yes	Little	None
Infrastructure & employment	Yes	Little	None
Navigation	Yes	None	None
Recreation/ fisheries	Yes	Little	None
Life	100-200 years	10-50 years	

AGE OF INDIAN LARGE DAMS

Climate Change - Implications on WR

Decline in the glaciers in the Himalayas

Increased drought & flood events – same amount of rainfall in shorter duration

Increased saline intrusion of coastal & island aquifers due to rising sea levels

Impact on Water Quality

Climate Change - Water Crisis

- As per UN World Water Development Report 2020, Climate change will affect the availability, quality and quantity of water for basic human needs
- Climate change will make extreme events more severe by altering the timing, intensity and duration of their occurrences
- The alteration of the water cycle will also pose risks for energy production, food security, human health, economic development and poverty reduction

Climate Change – Trends in Water Availability

Impacts on Water resources

Figure 8 Climate change scenario trends in water availability

the relative change in

not apply to disfoure

This figure depicts the relative change in annual discharge at 2°C temperature increased with present day (RCP 8.5)

Ref: The United Nations World Water Development Report 2020

thank you...

Aim at providing water...

of the right quality.
in the right quantity.
at the right place.
at the right time.
at the right price.