Snowmelt Runoff Modelling-Critical to Hydropower projects

Goverdhan Prasad, Director, Hydrology (N), Central Water Commission, New Delhi

Rainfall Vs Snow

Rainfall	Snow
•Liquid Water	•Crystalline water
•Produces immediate runoff	•Delayed Runoff
•Predictable Runoff	•Difficult to predict

Frozen water

- 80% of Total Fresh Water on earth is in Solid State
- About 30 % of the World's Land Cover is seasonally covered by snow & 10 % is permanently covered by Glaciers
- A large uncertainty & sensitivity lies in these frozen reservoirs
- Excessive snowmelt contributes to rise in global sea level

Himalayan Hydrology

- Supports major perennial Rivers of Northern & Eastern India
- Snowmelt mostly occurs in April, May & June months
- States of H.P, Haryana, Punjab, J&K, Delhi, U.P., Uttarakhand, Bihar, West-Bengal are directly affected
- Altitude in Himalayas controls temperature and precipitation
- Climate varies from hot & moist tropical in lower valleys to cool temperate at about 2000 m and tends towards polar at further higher altitudes
- Rainfall increases with altitude upto 2500 m and then starts to decrease

Snow-Melt Runoff

- In snowmelt, runoff is the surface runoff produced from melting of snow
- It is one of the major component of Global Hydrologic Cycle
- Contribute in High Fractions of Annual Runoff in Himalayan River Basins.
- Mountain snow fields act as natural reservoirs, storing precipitation from the cool season, when most precipitation falls and forms snow-packs, until the warm season when most of the snowpacks melt and release water into rivers

Modelling- Why necessary?

- During Summer/ Monsoon, Snow-melt component is quite large and in combination with extreme event may result in severe flooding
- Rapid snowmelt may even trigger landslides and debris flows.

Important for

- Design Flood Studies
- Flood Forecasting
- Timely & Correct Information about the snow cover & likely volume of runoff is of vital importance for managing of water resources as well as mitigating disasters

Importance of Snowmelt modelling to hydro projects

- To know amount of water likely to come due to snow melt in lean season
- Domestic/ Industrial Supply of Water in Lean Season
- Flood Control
- Irrigation Supply
- Hydropower Generation
- Reservoir Management
- Study of Impacts of climate change / Global Warming

Snowmelt Runoff Modelling-

Approaches

Temperature Index Approach

- Also called Conceptual Index Approach
- Air Temperature is used to approximate snowpack energy exchange.
- Empirical models based on the assumption of Linear relationship between snow melt rate and Mean daily air temperature
- Requires Less Input Parameters

Snowmelt Runoff Modelling-

Approaches

Energy budget approach

- Physical Model i.e. based on strict physical phenomenon
- Energy exchange at Snow surface through exchange of Short Wave & Long Wave Radiation , Energy Fluxes due to Sensible Heat, Latent Heat, Soil Heat and Rainfall
- Accuracy is high but extensive data requirement

Snowmelt-Runoff Model (SRM)

- SRM a conceptual, deterministic, degree day hydrologic model used to simulate daily runoff resulting from snowmelt and rainfall in mountainous regions.
- Requires daily temperature, precipitation, and daily snow covered area values as input parameters
- Developed by Martinec (1975) in small European basins
- Latest Version WinSRM Version 1.11
- Can be applied in mountain basins of almost any size and any elevation range
- The Hydrology Laboratory supports and distributes the Snowmelt Runoff Model free of charge at United States Department of Agriculture (USDA) website www.ars.usda.gov/Services

SRM Inputs

- Input variables temperature, precipitation and snow covered area
- Area-elevation curve of the basin
- Other basin characteristics such as forested area, soil conditions, antecedent precipitation, and runoff data are useful for facilitating the determination of the model parameters.

Uses of SRM

- Simulation of daily flows in a snowmelt season, in a year, or in a sequence of years
- Short term and seasonal runoff forecasts
- Evaluating the potential effect of climate change on the seasonal snow cover and runoff

SRM- Model Structure

 $Q_{n+1} = [c_{Sn} \cdot a_n (T_n + \Delta T_n) S_n + c_{Rn} P_n] \frac{A \cdot 10000}{86400} (1 - k_{n+1}) + Q_n k_{n+1}$

- where: $O = average daily discharge [m^3 s^{-1}]$
 - = runoff coefficient expressing the losses as a ratio (runoff/precipitation), with cs referring С to snowmelt and cp to rain
 - = degree-day factor [cm °C⁻¹d⁻¹] indicating the snowmelt depth resulting from 1 degree-day a
 - = number of degree-days [°C d] Т
 - ΔT = the adjustment by temperature lapse rate when extrapolating the temperature from the station to the average hypsometric elevation of the basin or zone [°C d]
 - = ratio of the snow covered area to the total area S
 - = precipitation contributing to runoff [cm]. A preselected threshold temperature, T_{CRIT}, P determines whether this contribution is rainfall and immediate. If precipitation is determined by T_{CRIT} to be new snow, it is kept on storage over the hitherto snow free area until melting conditions occur.
 - = area of the basin or zone [km²] A

SRM- Model Structure

k = recession coefficient indicating the decline of discharge in a period without snowmelt or rainfall:

 $k = \frac{Q_{m+1}}{Q_m}$ (m, m + 1 are the sequence of days during a true recession flow period).

n = sequence of days during the discharge computation period. Equation (1) is written for a time lag between the daily temperature cycle and the resulting discharge cycle of 18 hours. In this case, the number of degree-days measured on the nth day corresponds to the discharge on the n + 1 day. Various lag times can be introduced by a subroutine.

 $\frac{10000}{86400} = \text{ conversion from } \text{cm} \cdot \text{km}^2 \text{d}^{-1} \text{ to } \text{m}^3 \text{ s}^{-1}$

T, S and P are variables to be measured or determined each day, c_R , c_S , lapse rate to determine ΔT , T_{CRIT} , k and the lag time are parameters which are characteristic for a given basin or, more generally, for a given climate.

If elevation range of basin exceeds 500 m, it is recommended to subdivide it into elevation zones of about 500 m each.

Assessment of Model Accuracy

SRM uses 2 well established criteria

- Coefficient of Determination
- Deviation of Runoff volume

Remote Sensing Inputs

- Satellite Image from the Visible Range gives information about the snow-cover
- IR band is utilised in separating cloud cover from snow cover
- A few of them can be utilised to predict the amount of snow melt generated
- Image in visible spectrum gives the Snow cover
- Image in Band-10 gives the Albedo information (Important from energy reflection point of view)

Remote Sensing Inputs

- Snow Cover Area (SCA) -from MODIS / AWiFS satellite data
- Glacier Cover Area (GCA) –from AWiFS satellite data
- Land Surface Temperature (LST) –from MODIS satellite data (8-Day LST product MOD11A2)
- Incoming Solar Radiation (SR) –f(elevation, slope, aspect, Julian day, lat., long.)
- Snow Albedo(α) –MODIS satellite data (Daily SCA Product MOD10A1)
- Land Cover Mapped with AWiFS satellite data
- Snow persistence Index (SPI) –from MODIS satellite data (8-Day SCA Product MOD10A2)
- Digital Elevation Model, Slope, Aspect –ASTER data
- Field measured discharge, Rainfall data

Availability of remote Sensing Data

Platform Sensor	Spectral Bands	Spatial resolution	Minimum area size	Repeat period
Aircraft Orthophoto	Visible/NIR	2 m	1 km ²	flexible
IRS				
Pan	Green to NIR	5.8 m	2 km ²	24 days
LISS-II	1 – 3 Green to NIR	23 m	$2.5 - 5 \text{ km}^2$	24 days
WiFS	1 Red / 2 NIR	188 m	$10 - 20 \text{ km}^2$	5 days
SPOT				
HRVIR	1 – 3 Green to NIR	2.5 – 20 m	1 – 3 km ²	26 days
Landsat				
MSS	1 – 4 Green to NIR	80 m	$10 - 20 \text{ km}^2$	16 – 18 days
TM	1 – 4 Green to NIR	30 m	$2.5 - 5 \text{ km}^2$	16 – 18 days
ETM-Pan*	Visible to NIR	15 m	2 – 3 km ²	16 – 18 days
Terra/Aqua				
ASTER	1-3 Visible to NIR	15 m	2 – 3 km²	16 days **
MODIS	1 Red / 2 NIR	250 m	$20 - 50 \text{ km}^2$	1 day
	3 – 8 Blue to MIR	500 m	$50 - 100 \text{ km}^2$	1 day
NOAA				
AVHRR	1 Red / 2 NIR	1.1 km	10 – 500 km ²	12 hr
Meteosat				
SEVIRI	1 – 3 Red to NIR	3 km	500 - 1000 km ²	30 min
	12 Visible	1 km	$10 - 500 \text{ km}^2$	30 min

 Table 3
 Some of the possibilities of remote sensing for snow cover mapping.

Acronyms:

ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer • AVHRR = Advanced Very High Resolution Radiometer • HRVIR = High Resolution Visible and Near Infrared • IRS = Indian Remote Sensing • LISS = Linear Imaging Self-scanning Sensor • MIR = Middle Infrared • MODIS = Moderate Resolution Imaging Spectroradiometer • MSS = Multi-Spectral Scanner • NIR = Near Infrared • Pan = Panchromatic • SEVIRI = Spinning Enhanced Visible and Infrared Imager • SPOT = Satellite Pour l'Observation de La Terre • TM = Thematic Mapper • WiFS = Wide Field Sensor • ETM-Pan = Enhanced Thematic Mapper - Panchromatic

Why Snowmelt runoff critical for hydropower projects

- Most of Hydropower potential in India is in Himachal Pradesh, Uttarakhand, J&K & Arunachal Pradesh in Himalayan region with high concentration of glaciers
- Significant portion of catchments covered by seasonal snow during winter
- Predicting lean season flows for right sizing of projects and optimum operation
- Ascertaining effects of climate change / global warming and consequent changes in lean season flows

Conclusion

 Determination of snowmelt runoff correctly through Snowmelt Runoff Modelling is very helpful in optimum planning of hydropower potential of a basin and commercially beneficial operation of hydropower projects as viability of hydropower depends on lean season flows which in turn mostly depends on snow melt runoff.