CONTENTS

				Page
		MESS	AGES	(iii-vi)
		PREFA	ACE	(vii)
		COMM	MITTEE	(viii)
		FORE	WORD	(ix)
		GLOS	SARY & ABBREVIATIONS	(xvi)
Chapter	1:	INTRO	ODUCTION	1
		1.1	BACKGROUND AND PROGRESS OF IMPLEMENTATION OF SHP	1
		1.2	POWER SUPPLY POSITION	1
		1.3	SMALL HYDRO POTENTIAL	1
		1.4	REVIEW OF SHP-PERFORMANCE DURING 10 TH PLAN	2
		1.5	THRUST ON SHP PROJECTS	3
		1.6	ECONOMIC VIABILITY OF SHPs	3
		1.7	FEATURES OF SMALL HYDRO PRODECTS	3
		1.8	PRESENT SCENARIO	4
		1.9	POLICIES / INCENTIVES BY GOVT. OF INDIA & STATE GOVTS.	4
		1.10	STANDARDS / GUIDE LINES	4
		1.11	IMPORTANCE OF MANUAL	5
Chapter	2:	POLIC	CY AND REGULATORY MECHANISM	6
		2.1	INTRODUCTION	6
		2.2	THE AIM AND ACHIEVEMENT	6
		2.3	RENEWABLE ENERGY POLICY OF CENTRAL / STATE GOVT.	6
		2.4	HYDRO POLICY	6
		2.5	ELECTRICITY ACT 2003	7
		2.6	NATIONAL ELECTRICITY POLICY	7
		2.7	NATIONAL REHABILITATION & RESETTLEMENT POLICY 2007	7
		2.8	NATIONAL TARIFF POLICY	8
		2.9	STATE POLICY FOR PRIVATE SHP PROJECTS	8
		2.10	PROJECTS UNDER MNRE/IREDA SUBSIDY SCHEMES	8
	2.	2.11	REGULATORY MECHANISM	9
Chapter	3:	IDEN:	DIFICATION OF SITE	18
		3.1 2.2		10
		2.2		10
		3.5	SITE SELECTION AND BASIC LAVOUT	20
		3.5	ELECTRICAL SYSTEM OPERATION	20
		3.5	SITE EVALUATION	21
Chanter	4.	FIFLE	INVESTIGATIONS	25
Chapter	-	41	FIFLD INVESTIGATIONS	25
		4.2	HYDROLOGICAL INVESTIGATIONS	25
		4.3	TOPOGRAPHICAL SURVEYS	25
		4.4	GEOLOGICAL INVESTIGATIONS	29
		4.5	CONSTRUCTION MATERIAL SURVEY	33
		4.6	INFRASTRUCTURE	33
		4.7	POWER MARKET SURVEY	33

			P	Page
		4.8	SURVEYS FOR EVACUATING POWER	33
		4.9	CRITERIA FOR GRADING OF SCHEMES	33
Chapter	5:	HYDR	OLOGY	35
		5.1	INTRODUCTION	35
		5.2	TYPE -1 SCHEME - RUN OF RIVER SCHEME	35
		5.3	TYPE 2&3 SCHEMES ON CANAL FALLS/DAM TOE POWER HOUSE	41
Chapter	6:	ASSES	SSMENT OF POWER POTENTIAL & OPTIMIZATION OF INSTALLED	
		CAPAC	CITY	81
		6.1	LOAD SURVEY	81
		6.2	POWER POTENTIAL	81
		6.3	HEAD	82
		6.4	DETERMINATION OF NET HEAD	82
		6.5	ASSESSMENT OF POWER POTENTIAL	83
		6.6	OPTIMIZATION STUDIES FOR DETERMINATION OF INSTALLED CAPACITY	86
		6.7	NUMBER OF UNITS TO BE INSTALLED	89
		6.8	ENERGY GENERATION AND SALE	89
Chapter	7:	ENVIF	RONMENTAL ASPECTS	94
_		7.1	ENVIRONMENTAL ASPECTS	94
Chapter	8:	DESIG	SN OF CIVIL WORKS	103
		8.1	TYPE 1: RUN-OF-THE-RIVER SCHEMES	103
		8.2	TYPE 2: SCHEMES ON CANAL FALLS	122
		8.3	TYPE 3: POWERHOUSE LOCATED DOWNSTREAM OF AN EXISTING	125
Chapter	9:	DESIG	IN OF HYDRO ELECTRIC EOUIPMENTS	144
		9.1	INTRODUCTION	144
		9.2	REVIEW OF TURBINES AND THEIR APPLICATION	146
		9.3	TURBINE AND GENERATOR RATINGS. OTHER PARAMETERS	146
		9.4	RANGES OF APPLICATION	147
		9.5	SELECTION OF TYPE OF TURBINE	147
		9.6	COMPUTATION OF SPEED OF TURBINE	149
		9.7	RUNNER DIAMETER AND DIMENSIONS OF TURBINE	150
		9.8	SETTING OF RUNNER TO MINIMISE CAVITATION	155
		9.9	LAYOUT AND DIMENSIONS OF POWERHOUSE WITH TURBINES	
			OF DIFFERENT TYPES	156
		9.10	EFFICIENCY OF TURBINES	156
		9.11	GENERATORS	157
		9.12	BRIEF REVIEW OF MAIN THEORETICAL FACTORS WHICH GOVERN DESIGN OF GENERATORS	159
		9.13	ANCILLARY AND AUXILIARY EQUIPMENT ITEMS	162
		9.14	POWER STATION ELECTRICAL LAYOUT (OR SINGLE LINE DIAGRAM)	164
		9.15	OTHER ELECTRICAL/MECHANICAL EQUIPMENT OF THE POWERHOUSE	164
		9.16	DC SUPPLY EQUIPMENT	168
		9.17	H.T. BREAKERS (33 KV OR 11 KV OR 6.6 KV OR 3.3 KV)	168
		9.18	ISOLATING SWITCHES, LIGHTNING ARRESTERS	168
		9.19	POWER AND CONTROL CABLES	168

			Page
	9.20	EARTHING SYSTEM	169
	9.21	DEWATERING SYSTEM	171
	9.22	DRAINAGE SYSTEM	171
	9.23	CRANE FACILITIES	171
	9.24	FIRE PROTECTION SYSTEM	171
Chapter	10:HYDR	RO MECHANICAL EQUIPMENT	176
	10.1	INTRODUCTION	176
	10.2	TYPE OF GATES	176
	10.3	TYPE OF HOISTS	176
	10.4	PLANNING OF VARIOUS COMPONENTS OF GATES	181
	10.5	DESIGN & DESIGN CRITERIA	181
	10.6	REQUIREMENTS FOR THE THREE TYPES OF SMALL HYDRO SCHEMES	182
Chapter	11: COST	ESTIMATES, EVALUATION AND FINANCIAL ANALYSIS	186
	SECT	ION- 1: COST ESTIMATES	
	11.1	INTRODUCTION	186
	11.2	ESTIMATES FOR CIVIL WORKS	186
	11.3	PREPARATION OF ESTIMATES	188
	11.4	ESTIMATE FOR ELECTRICAL & MECHANICAL WORKS	189
	SECT	ION- 2: ECONOMIC AND FINANCIAL EVALUATION	104
	11.5	ECONOMIC EVALUATION	194
	11.6	FINANCIAL EVALUATION	195
	11.7	SALE RATE OF ENERGY AND TARIFF FORMULATION	190
Chapter	12: FINAN	NCING ARRANGEMENTS AND APPROVALS	207
	12.1	INTRODUCTION	207
	12.2	COST OF PROJECT	208
	12.3	SOURCES OF FINANCE	208
	12.4	FISCAL & FINANCIAL INCENTIVES FOR SMALL HYDRO	209
Charter	12.5	INDIAN RENEWABLE ENERGY DEVELOPMENT AGENCY (IREDA)	209
Cnapter	13: PREP	ARAIION FOR IMPLEMENTATION	212
	13.1	INTRODUCTION DDE EEASIDII ITV. STUDIES	212
	13.2	DETAILED DROJECT REDORT (DDR)	212
	13.5	EINANCIAL APPANGEMENT	212
	13.4	APPROVAL/CLEARANCES FROM STATUTORY AUTHORITIES	212
	13.6	ADVANCE ACTION	213
Chapter	14: STAN	DARD CAPACITIES AND EQUIPMENT	221
p	14.1	INTRODUCTION	221
	14.2	MAIN TYPES OF TURBINES	221
	14.3	BASIC FACTORS OF STANDARD DESIGNS	222
Chapter	15:STAN	DARDS FOR SMALL HYDRO POWER PROJECTS	238
	15.1	INTRODUCTION	238
	15.2	STANDARDS AND USES	238
	15.3	STANDARDS AND GUIDELINES	239
	15.4	STANDARDS/MANUALS/GUIDELINES UNDER PREPARATION	240
	15.5	TECHNOLOGY IMPROVEMENT	240

Page	
------	--

Chapter	16:PROC	UREMENT OF EQUIPMENT, WORKS AND CONSULTANCY SERVICE	S 243
	16.1	INTRODUCTION	243
	16.2	CONSULTANCY SERVICES FOR SHP	243
	16.3	ROLE OF CONSULTANT	243
	16.4	INVESTIGATION AND PLANNING	244
	16.5	ASSISTANCE IN APPROVALS AND CLEARANCES	244
	16.6	WORKS DURING DESIGN-ENGG. / EXECUTION	244
	16.7	POST EXECUTION	246
	16.8	SELECTION OF CONTRACTORS	246
	16.9	CONTRACT PROCEDURES	246
	16.10	TURNKEY CONTRACTS	247
	16.11	TENDERING PRACTICES	247
	16.12	TENDERING PROCEDURES FOR WORLD BANK AIDED PROJECTS	248
	16.13	CONTRACT DOCUMENTS	248
	16.14	PROCUREMENT REQUIREMENTS	248
	16.15	WORLD BANK PROCUREMENT GUIDELINES	248
	16.16	LIST OF MANUFACTURES	249
	16.17	CONCLUSION	249
Chapter	17: MONI	TORING DURING CONSTRUCTION	265
	17.1	INTRODUCTION	265
	17.2	NEED OF A CONSTRUCTION SCHEDULE	265
	17.3	PERT CHART	265
	17.4	LAND ACQUISITION	266
	17.5	ELECTRO-MECHANICAL EQUIPMENT	266
	17.6	CONSTRUCTION MATERIALS	266
	17.7	EXPLOSIVES	266
	17.8	GEOLOGICAL UNCERTAINTIES	266
	17.9	TIME AND COST OVER-RUNS	266
	17.10	CONSTRUCTION MACHINERY	266
	17.11	INSPECTION	266
	17.12	STORAGE OF EQUIPMENT/SPARES	266
	17.13	MONITORING OF WORLD BANK AIDED PROJECTS	266
	17.14	MONITORING OF OTHER PROJECTS	266
Chapter	18: EREC	TION AND COMMISSIONING	272
	18.1	INTRODUCTION	272
	18.2	CONTROLS	273
Chapter	19:POWE	ER EVACUATION ARRANGEMENTS	276
	19.1	INTRODUCTION	276
	19.2	FACTORS INFLUENCING POWER EVACUATION ARRANGEMENT	276
	19.3	TRANSMISSION VOLTAGE CONSIDERATIONS	276
	19.4	UNIT AND NON-UNIT SYSTEM	277
	19.5	EXISTING POWER SYSTEM IN THE VICINITY	277
	19.6	ARRANGEMENT FOR EVACUATION	279
	19.7	PROTECTION AND COMMUNICATION	279

			Page
	19.8	INTERCONNECTION AND WHEELING CHARGES AND BANKING	
	10.0	OF ENERGY	279
a	19.9	POWER PURCHASE AGREEMENT	280
Chapter	20:QUAL	ITY ASSURANCE	281
	20.1	INTRODUCTION	281
	20.2	QUALITY CONTROL	281
	20.3	QUALITY ASSURANCE	281
	20.4	INSPECTION & TESTING	283
Chapter	21:CARB	ON CREDITS OPPORTUNITIES FOR HYDRO PROJECTS	285
	21.1	INTRODUCTION	285
	21.2	CLEAN DEVELOPMENT MECHANISM (CDM) AND CARBON TRADING	287
	21.3	CDM METHODOLOGIES	287
	21.4	CDM PROCEDURE -IN DETAIL	288
	21.5	PARTIES INVOLVED & THEIR ROLE	291
	21.6	TENTATIVE TIME SCHEDULE FOR CDM	292
	21.7	TENTATIVE COST SCHEDULE AND REALIZATION	292
	21.8	HYDRO CDM PROJECT AND ENVIRONMENTAL CONCERNS	293
Chapter	22:OPER	ATION & MAINTENANCE GUIDELINES	294
	22.1	INTRODUCTION	294
	22.2	GUIDELINES FOR OPERATION OF SMALL HYDRO POWER PLANT	294
	22.3	GUIDELINES FOR MAINTENANCE OF SMALL HYDRO POWER PLANT	295
Chapter	23:CASE	STUDIES	298
	23.1	EXPERIENCE OF SUCCESSFUL DEVELOPERS	298
	23.2	CASE STUDY-I: BOGDONG MINI HYDRO POWER PROJECT	299
	23.3	CASE STUDY-II: SHP DHARAMSHALA HYDRO	304
	23.4	CASE STUDY-III: SHP: M/S BHORUKA POWER	
		CORPORATION LTD (BPCL)	304
	23.5	CASE STUDY-IV: SHP: KKK HYDRO	305
	23.6	CASE STUDY-V: 2×8 MW PATIKARI HYDRO POWER PROJECT	306
	23.7	CASE STUDY-VI: IKU-II SMALL HYDRO PROJECT	308
Chapter	24: FREQ HYDR	UENTLY ASKED QUESTIONS ON DEVELOPMENT OF SMALL OPOWER PROJECTS (SHPs)	314