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Abstract 

In this research, the evaluation of cavitation threshold detection and the automation of the detection process with regard to 

the Remaining Useful Life (RUL) of the Sefidrood power plant turbine, has been studied. The input of generated model by 

MATLAB program includes data driven from Kaplan hydro turbine located on Tarik hydro power plant. The proposed 

model is based on 61 features resulting from 6 cavitation sensitivity parameters and 17 operational conditions. For training in 

MATLAB program, 12 individual data sets and 4095 unique combinations were created and 408 data were selected for 

examination. The training data combined with sensor rating and cavitation sensitivity feature were employed to predict the 

cavitation and the best training data set with 98% accuracy. The results showed that the use of a fully automated process for 

sensitivity determination and cavitation classification was more suitable than the use of a process based on manually selected 

thresholds. Furthermore, considering the operational conditions and RUL, the automation of determination of cavitation 

threshold without human intervention was much more accurate.  

. 
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Introduction 

The hydroelectric power makes up 98.8% of the national electricity generation and 13.8% of the total electricity 

produced in Iran. While hydroelectricity accounts for about 19% of the world's total electrical energy. 

Cavitation damage to hydro turbine blades1 is an expensive problem that reduces power generation and turbine 

life. Bajic et al. (2003) compared the sensors, the location of the sensors or the cavitation sensitivity parameters 

(CSP). Francois (2012) Showed that no studies have been published to estimate the hydro turbine erosion rate. 

Data from the hydro turbine blade inspections were collected in an attempt to provide a model of erosion rates 

based on the Wolff et al. (2005) inspection reports, but their collected data was not enough. Scaler et al. (2014) 

and Cencic et al. (2014) Suggested that cavitation detection features and their identification methods may be 

used to estimate the erosion or prediction of remaining useful life, but have so far failed to implement it in a 

hydro turbine at the hydroelectric plant. There appears to be no general study on the prediction of hydro turbine 

erosion or the remaining useful life prediction method. In addition, no research has been done on the selection of 

the cavitation detection features. Up to now, nobody has tried to identify the features of the cavitation detection 

in a suitable iterative approach for hydro-turbines. Despite the advances in the design of water turbines, the 

damage caused by cavitation is one of the main reasons for the failure of the turbine (Dorji and Ghomashchi, 

2014). This also highlights the importance of developing better methods for detecting erosion cavitation in water 

turbines. The aim of this research is to attempt to develop a data-based model for the detection of automatic 
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cavitation and estimate the erosion rate of cavitation for a long time in a case study based on data obtained from 

the of the SefidRood dam turbine considering remaining useful life (RUL).  

2. Methods and materials  

Study area: The Tarik hydroelectric power plant of Sefidrood dam is located at longitude of 36° 58' and latitude 

of 49° 35', with a distance of approximately 35 km downstream of the Sefidrood storage dam in the Gilan 

province. The dark diversion dam is considered to be the first bulb turbine power plant in the country and since 

this type of turbine is used for low water level and high discharge, it can be used in most small dams and less 

mountainous and watery areas, such as the northern areas of the country. Figure 1 shows a view of the Sefidrood 

dam. The general specifications of the power plant equipment include two turbine generator units of the Kaplan 

type. The case study is investigation of real cavitation over Kaplan PIT x1500 KW turbine which have 

cavitation erosion over leading edge of blades.  

Table1.  The calculations used for the values of the cavitation sensitivity parameter features. 

 

frms is average square root and fpeak is maximum peak domain of a periodic quantity that is calculated respect to 

its zero value and fCF is the ratio of peak to the effective value of two periodic quantity and fkurt is sharpness of 

the peak of the curve, which shows the extent and frequency of the mean and is the peak level in a statistical 

graph.  

Data have been prepared in 3 steps. (1) cavitation sensitivity parameter (CSP) has been defined, data were 

collected from the cavitation analysis, including sensor types, location of sensors and operating conditions, and 

the values were calculated for entering the developed matrix. (2) Cavitation sensitivity parameters were 

organized in columns of a characteristic matrix. (3) The matrix columns were normalized using z-score 

transformation. The new normalized value has no unit and the size of the standard deviation is the average of the 

data. Proposed method was shown with 61 features derived from 6 unique cavitation sensitivity parameters and 

17 unique operating conditions. The analysis of the main component in the correlation matrix F was done to 

obtain P (Jolliffe, 2002). F using P to construct a new representation of the main data turned to Y and each score 

vector of the main component in Y was plotted to observe a variance for each main component in accordance 

with equation (1). The conversion was calculated as follows:  

 

To select the cavitation detection feature, the main components that are not dependent on the cavitation erosion 

must be eliminated. Bajic (2002) developed a multidimensional technique that is effective for all types of hydro 
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turbines. Investigations of Rus et al. (2007) and Escaler et al. (2014) using the first signals of the band-pass filter 

sensor, showed a good cavitation detection. Evaluation of the mean root mean of sensor signals is a method 

widely used to detect cavitation detection. Generally, the calculated RMS of raw sensor signals is sensitive to 

disruptive events. Cencic et al. (2014) evaluated five frequency ranges for cavitation response, and finally, a 

specific frequency range was shown as the best cavitation sensitive range.  

2.1 Cavitation intensity and intensity measurement 

The cavitation intensity can be measured through vibration sensors, acoustic emission, and the duration of 

exposure to cavitation to estimate cavitation degradation and the remaining useful life. Measurement scale of 

cavitation sensitivity parameter is dependent on the sensor type and the measured value is affected by the sensor 

location (Dular et al., 2006). Accumulated cavitation intensity at total data sets, Itotal, was calculated from Eq. 

(2).  

 

XMD-cavitation is Mahalanobis distance from every parameter of cavitation sensitivity identified by the 

classification  

as a cavitation class and tblok is the time length of the block used to create the cavitation sensitivity parameter.  

The precision of the cavitation classification has been calculated in four ways: 1) A simple threshold rank 

classification and manual threshold selection. 2) Simple threshold classification and an unattended learning 

algorithm; 3) A supervised learning algorithm (supporting vector machines) and trainig data that are manually 

labeled. 4) A supervised learning algorithm and trainig data that is labeled with a unsupervised learning 

algorithm (K-Means) using the MATLAB program.  

 

2.2 Features selection for cavitation detection  

The purpose of this process is to select the best long-term cavitation detection feature for a unique hydroturbine. 

The correlation coefficient between the scores of the main component and the normal attribute was calculated. 

To compare the correlation coefficients, it can be referred to Holick (2013). In this research and based on 

experience-based law, a very high degree of dependence on the main component scores related to cavitation 

erosion was selected and items with an absolute value of less than 0.9 were removed. The standard deviation for 

each feature under hydroturbin operating conditions was evaluated with minimal cavitation  

(SCSP-min) and maximum cavitation (SCSP-max) and dispersion of features was evaluated. To remove additional 

features and thresholds Eq. (3) has been used.  

 

The remaining features were ranked based on a combination of standard deviations and according to Eq. (4) to 

determine the best features for long-term monitoring.  

 

The best features of cavitation have the lowest values. Finally, the features were selected based on the final 

subjective evaluation and based on practical considerations for long-term cavitation detection. The low ramp 
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data was collected and divided into 1 block of seconds and direct current (frequency Zero) was eliminated in 

each block and the Fourier discrete conversion of each block and sample variance of each frequency value were 

calculated. The output for a frequency plot compared to the range, called the frequency spectrum. 

3. Results and discussions  

In the first step of the feature selection process, 6 value of the cavitation sensitivity parameter for each sensor 

was calculated in which the high frequency data and 5 values for which the mean frequency data were collected. 

The cavitation feature matrix was created by computing the values of the cavitation sensitivity parameter 

mentioned in Table 1 for three acoustic emission sensors, three accelerometers, four proximity probes and a 

pressure transducer in a cavitation analysis with 61 general characteristics. 32 value of the cavitation sensitivity 

parameter for each of the 17 operating modes was obtained and, thus, 544 the value of the cavitation sensitivity 

parameter was obtained for each feature. Feature naming is a combination of the abbreviation of the sensor type 

and the parameter number of the cavitation sensitivity.  

Table 1. Details of the cavitation sensitivity parameter for each type of sensor 

 

The normalization of the feature matrix and the analysis of the main component was done using MATLAB 

software and resulted in the matrix of the scores of the original component Y.  

 

3.1. Classification test results  

Taking into account 17 unique speeds and 24 seconds of data for each flow rate, 408 blocks of vibration data 

were used to generate test data. The simple classifier algorithms and the supporting vector machine have been 

applied to the test data and the results of the group predictions were compared with the appropriate group labels 

for accuracy determination. Equation (5) was used to calculate the accuracy.  
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The accumulated cavitation intensity in the entire data set is shown in Table 2. For supporting vector machine 

results, the probe/cavitation sensitivity parameters pairs were summed up with the first proximity probe, for 

example, a training set created with data collected from the proximity probe 1 from the frequency range 1 is 

used to calculate the cavitation sensitivity parameter, which briefly represented as "PP1-CSP".  

Table 2. Classifier test results for univariate threshold. 

 

The accuracy results of the second to seventh classifier based on the multivariate thresholds are shown in Table2 

 The graphical representation of the correct classification labels for the test data is shown in Figure 1 by manual 

method and in Figure 2 by the k-means clustering method and in Figures 3 and 4 by a supporting vector 

machine classification.  
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Table 5. Classifier test results for multivariate threshold. 

 

 

 

Figure 1. cavitation data with correct label using manual method. 
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Figure 2. cavitation data with correct label using k-mean clustering method. 

 

 

 

Figure 3. cavitation data labeled with a manually selected supporting vector machine model, univariate 

threshold and training set ،PP4-CSP3، PP1-CSP3، PP4-CSP1، PP3-CSP1, PP3-CSP2. 

 

 

Figure 4. cavitation data labeled with supporting vector machine (5
th

 order) model, multivariate 

threshold using k-mean clustering. 
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4. Conclusion  

The process of selecting the features described in this study was based on the data of the cavitation studies in a 

Kaplan hydroturbine. CSP3 was superior in several results, and the precision of this compound is more than 

98% in the prediction of cavitation. From more explicit sources of adding data, choosing a polynomial order is 

for nonlinear thresholds. The most precise nonlinear thresholds were obtained using a fifth-order polynomial. In 

manually selected based thresholds, the precision of 95% was obtained and in the fully automated process, 

which was used using K-Means clustering and supporting vector machine for detecting cavitation, a precision of 

98% was obtained, which considering  the time needed for analysis shows the usefulness of the machine 

learning framework in comparison with the manual method. This method is used to identify the cavitation 

sensitivity parameter, to automate the training process and to classify correctly and also be used to determine the 

threshold that is easily adapted to the changing conditions of the hydroturbine, with minimal disruption of 

power production and without human intervention.  
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