
5th Asia-Pacific Group - International Symposium on Water and Dams, 24-27 February 2021, New Delhi, India 

 

1 

 

River Flow Forecastingby a Dynamic K-Nearest Neighbors 

Method 
 

 
EhsanEbrahimi1, MojtabaShourian1* 

 
1 Faculty of Civil, Water and Environmental Engineering, Technical and Engineering College, ShahidBeheshti 

University, Tehran, Iran 
*Email: m_shourian@sbu.ac.ir 

 
Abstract 

River flow prediction is an important aspect for robust water resources planning and flood warning 

systems operation. Data driven approaches have been found efficient to this end. K-nearest neighbors 

(KNN) is a lazy learning method that can be used for this purpose. In this study, a new method for 

selecting neighbors named dynamic number of K nearest neighbor (DKNN) is introduced which uses an 

optimized distance to select a different number of neighbors for each instance of predictors instead of 

using a fixed K number as in the classic method. The Particle Swarm Optimization (PSO) algorithm is 

used for optimization process and for improvement of results. Performance of the proposed method is 

tested using two years of the daily inflow to the Gheshlagh reservoir in west of Iran. Results indicate that 

the proposed method increased the accuracy of prediction 4.6% by reducing RMSE compared to the 

classic KNN.  
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1. Introduction 
 

An important issue for surface water resources planning is to predict accurately the inflow to a reservoir so that 

planning and management of the said reservoir would be more effective and efficient [1]. Physical-based and 

data driven models can be used to predict the river flow [2]. Physical-based models are usually time consuming, 

complex and difficult to be used [3]. So to alleviate the problems, data driven approaches (DDA) are proposed 

vastly for river flow prediction. Although DDA do not simulate the hydrologic processes, they can be used to 

accurately predict the river flow and help in the process of planning. Some of the popular methods that are 

widely used for river flow prediction are multiple linear regressions (MLR), non-parametric regressions like K-

nearest neighbors (KNN), artificial neural network (ANN), adaptive neuro-fuzzy inference systems (ANFIS) 

and support vector machines (SVM) [4, 5].  

The KNN method is one of the widely used methods for variety of problems such as classification [5], clustering 

[6] and regression [7]. In this field, Galeati used KNN for predicting daily inflow and compared results to 

autoregressive model with exogenous input (ARX) method. The results showed that both methods have good 

performance but the KNN have simpler structure and due to this simplicity it’s better to be used in larger scales 

[8].  Shamseldin and O’Connor introduced Nearest Neighbor Linear Perturbation Model (NNLPM) for river 

flow prediction. Their proposed model showed better accuracy in prediction of non-seasonal flows compared to 

simple linear mode and linear perturbation model [9].  Lall and Sharma introduced a method for resampling 

flow of monthly data and it showed to be effective with time series generated with autoregressive models [10]. 

Souza Filho and Lall used KNN to disaggregate annual flow prediction to monthly or higher resolution flows. 

Their method maintained space-time consistency in different places and sub-periods and showed ability to 

predict river flow up to 18 month ahead of time [11]. Laio et al showed that KNN performed slightly better in 

short term flood estimation in comparison with ANN [12]. Leander et al. used KNN method to resample 

extreme flood conditions. They found out that KNN models underestimate less extreme daily discharges [13]. 

Solomatine et al. showed that using KNN is more suited for short term inflow prediction than ANN [14]. Wu et 

al. tested KNN and other DDA coupled with preprocessing techniques to predict stream flow. Results showed 

that models performed better when fed preprocessed data [15]. Hilaire et al. used KNN to predict river water 

temperatures and showed that KNN can be dependable as a tool to predict water temperatures [16]. Liu et al. 

used and compared KNN for real time flood prediction to Kalman filter and showed KNN performs better in 

longer lead time prediction [17].  

The power of KNN lies in the facts that it follows a simple algorithm and it can be used for linear and nonlinear 

problems. But the results of this method are dependent on choosing the optimum number of neighbors and 

spikes in error occurrence for extreme values predicts [18]. Domeniconi et al. found out that when the query 
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points are not uniformly disturbed finding out the optimized k is very difficult. So different applications and 

cases need a distinct optimal value of k and finding this out is still a challenge [19]. Liu et al. proposed a new 

method to alleviate the challenge of finding an optimal value of k. Their method used mutual nearest neighbor to 

determine the class for an unknown query. They showed that the strength of this approach is outlier neighbors 

affecting the accuracy of prediction can be identified and excluded from the procedure. The results showed 

better classification performance to the classic KNN [20].  

 In the present study, an improvement is proposed in the classic KNN method for river flow prediction. Instead 

of using a fixed number of neighbors, all neighbors within an optimized distance of the predictors are used. So, 

for every instance of river flow data the number of contributing neighbors may differ. The benefits of this 

approach are: 

1. Maximum number of neighbors within the optimized distance can be used without degrading the accuracy.  

2. Increased number of training vectors gives us the option to extract more information and features from data. 

3. The prediction accuracy for a certain interval can be improved without changing the result of prediction for 

other intervals. 

The distances and the weights of the neighbors are optimized by the particle swarm optimization algorithm. The 

results of the proposed method is compared with the classic KNN using the statistical criteria.  

 

2. Methodology  

 
The classic KNN method, the proposed dynamic number of neighbors, the PSO algorithm and the assessment 

criteria are explained in the following sections. 

 

2.1. K-Nearest Neighbors Algorithm  

 

KNN methods in general use and compare the similarities (in our study distances) between predictors and 

historical data to calculate best estimation of dependent variables of that particular set of predictors [21]. 

Predictors or independent variables are used as input for prediction procedure.  The algorithm of a classic KNN 

regression can be broken into the following steps: 

1. Considering a vector consisting m independent variables as predictors X = {x1, x2, x3, …,xm} with Y as the 

dependent variable.  

2. Considering a training set containing the historical data with n vectors of Xt = {x1t, x2t, …,xmt} and a 

dependent variable of Yt associated with each vector. 

3. Calculating the distance of the predictor vector with each of the n training vectors. The Euclidian distance 

function which is used in this study is [21]:   

 

𝛥𝑥𝑦 = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 +⋯+ (𝑥𝑚 − 𝑦𝑚)
2 

(1) 

 

 

 

4. K training vectors with the least distance to the predictor vector (K-nearest neighbors) are selected. 

5. A Kernel function for each of the K selected training vectors is calculated as:  

 

𝑓𝑘(𝛥𝑘) =

1
𝛥𝑘
⁄

∑ 1
𝛥𝑘
⁄

𝐾

𝑘=1

 (2) 

 

 

6. Estimated dependent variable is calculated as: 

𝑌 = ∑𝑓𝑘(𝛥𝑘) × 𝑦𝑘

𝐾

𝑘=1

 
(3) 

 

 

 

2.2 KNN with Dynamic Number of Neighbors (DKNN) 

 

The main difference between the proposed method of dynamic number of neighbors and the classic KNN is the 

way of selection of the training vectors. The steps of this method are as following: 
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1. Considering number of intervals and assigning a distance number to each interval (distance will be optimized 

using PSO): 

{
 
 

 
 

𝐷1𝑖1 < 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ≤ 𝑖2
𝐷2                      𝑖2 < 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ≤ 𝑖3

.

.

.
𝐷𝑛𝑖𝑛 < 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ≤ 𝑖𝑛+1

 
(4) 

 

 

Dj is the j'th interval optimized distance, 𝑖𝑗 is the j'th interval's start point and n is the number of intervals. 

2. Predictors based on their greatness are placed in one of the intervals. 

3. Every training vector is examined and gets selected if its absolute distance is equal or less than the distance 

assigned to the interval the predictors are placed in. 

4. All of the selected vectors contribute (which the number of vectors would be different for each predictor) and 

the estimation of dependent variable follows as the classic KNN with calculating the Euclidian distance and the 

Kernel function. The benefits and advantages of this method are: 

1. Maximum number of neighbors within the optimized distance can be used without degrading the accuracy.  

2. Increased number of training vectors gives us the option to extract more information and features from data. 

3. The prediction accuracy for a certain interval can be improved without changing the result of prediction for 

other intervals. 

 

2.3. Particle Swarm Optimization Algorithm  

 

The particle swarm optimization (PSO) is one of many swarm intelligence methods used for solving 

optimization problems. PSO can be easily implemented and since computational and memory requirements are 

relatively low, it is inexpensive to compute. In PSO, a population (swarms) of candidate solutions are moved 

around search space using velocity and weight formulas. These formulas are effected by each of the particle’s 

best known position in the search space as well as the entire swarm’s best position in each iteration. So if a 

better position is found in an iteration it will guide the movements of the swarm to that position. The two main 

PSO equations that calculate velocity and position of each particle in the search domain in every iteration (i) are: 

 

𝑣𝑖+1 = 𝐾 [𝑤𝑖 × 𝑣𝑖 + 𝐶1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖  
 −𝑥𝑖) + 𝐶2𝑟2 (𝐺𝑏𝑒𝑠𝑡𝑖

−𝑥𝑖)] 
(5) 

 

 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 
(6) 

 

 

𝐾is constriction factor, 𝑤𝑖  is inertia weight, 𝐶1 and 𝐶2are cognitive and social parameters respectively, 𝑟1and 𝑟2 

are uniformly disturbed random number between 0 and 1 and 𝑝𝑏𝑒𝑠𝑡 is the best previously  visited position of the 

particle while 𝐺𝑏𝑒𝑠𝑡  is the best position visited across all particles. 

 

2.4 Assessment Criteria 

 

In this study, parameters used in each of the proposed method and techniques are optimized with PSO. To 

ensure that the best result is obtainedby PSO, each of the variations is optimized 10 times and best result is 

selected. The optimization is used to maximize the Nash-Sutcliffe coefficient in each method. Three 

performance criteria to assess the proposed method and subsequent techniques are used as follow: 

1. Nash-Sutcliffe Error [22]: 

𝑁𝑆𝐸 = 1 −
∑ (𝑇𝑡 − 𝑌𝑡)

2𝑛

𝑡=1

∑ (𝑇𝑡 − �̅�)
2𝑛

𝑡=1

 
(7) 

 

 

2. Root Mean Square Error [23]: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑇𝑡 − 𝑌𝑡)

2𝑛
𝑡=1

𝑛
 

(8) 

 

 

3. Correlation coefficient: 
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𝑅 =
∑ (𝑇𝑡 − �̅�)(𝑌𝑡 − �̅�)

𝑛

𝑡=1

∑ (𝑇𝑡 − �̅�)
𝑛

𝑡=1
⋅ ∑ (𝑌𝑡 − �̅�)

𝑛

𝑡=1

 
(9) 

 

 

n is the number of prediction instances, 𝑇𝑡is the observed flow, 𝑌𝑡is the model estimated value, �̅� is mean of the 

observed flows and �̅� is mean of model estimated values in above equations. To assess the performance of the 

proposed method and subsequent techniques in extreme conditions and high flow and low flow values, RMSE is 

calculated once for validation data that are greater than the average and again for data below the average. 

 

3. Case study  
 

Predicting the daily inflow to the Gheshlagh Reservoir in west of Iran is the purpose of this study. This dam 

supplies the water demands of the Sanandaj city and is also used for recreational and sport purposes. In Figure 3, 

location of the Gheshlagh Dam in Iran is shown. 

 

 
Figure 1: Location of the Gheshlagh Dam in Iran 

 

The daily mean inflow to the reservoir for 10 years from 2007 to 2017 is used for training, calibration and 

evaluation. The first six years are used for training, the seventh and eighth years are used for calibration and the 

last two years are used to evaluating the proposed method. Predictors or independent variables are used as input 

for the prediction procedure. The predictors used are inflow of days prior to the day being predicted. The 

method  proposed, work with any number of days as predictors but in this study two, three, four and five days 

prior are used as the predictors and best performing number of days for each variation are selected in calibration 

phase and used in verification to compare the results. In Figure 4, 10-years daily inflow to the Gheshlagh dam is 

shown. 

 

 
Figure 2: 10 year's daily time series of the Gheshlagh reservoir inflow 
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4. Results and Discussion 

 
To assess the performance of the proposed method, Gheshlagh Dam inflow is predicted with the classic KNN 

and the dynamic K-nearest neighbors (DKNN). Optimum number of contributing neighbors, their weights and 

number of predictor are obtained by PSO using the calibration data set and are applied for the verification data 

set. In Figure 3, result of the DKNN is shown. 

 

 

 
Figure 3: Observed vs. Predicted flow by the modified KNN method (DKNN) 

 

In Figure 4, result of the DKNN is presented and compared to observed data and the classic KNN method 

results.In Table 1, result of various assessment criteria mentioned in section 2.5 are presented. 

 

Table 1: Values of the assessment criteria for DKNN method and subsequent techniques 

Method Nash-Sutcliffe Total RMSE 
Above mean 

data RMSE 

Below mean 

data RMSE 

Correlation 

coefficient 

KNN 0.869 1.84 3.02 0.29 0.96 

DKNN 0.880 1.76 2.87 0.35 0.94 

 

 
Figure 4: Time series of the observed vs. classic KNN and DKNN estimated flow 
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The result of the verification process shows better performance by the dynamic K number of neighbors (DKNN) 

method than the classic KNN. Looking at Table 1, the NS coefficient is increased from 0.869 for the classic 

KNN to 0.880 for DKNN and total root mean square error (RMSE) is decreased from 1.84 to 1.76 which shows 

4.6% improvement in accuracy of prediction. It should be noted that in testing some other data, these two 

methods had similar performance but with added benefits by the DKNN method which make it superior. These 

benefits are the ability to use maximum number of neighbors for each prediction instance without sacrificing the 

performance of the whole prediction which opens up the opportunity to extract features and information from 

more variety of data for each prediction instance. For example, in some tests, the optimum number of neighbors 

for the classic KNN obtained very small, so a neighbor with a little more distance than the last selected neighbor 

which may have better features is neglected, while in the DKNN method, these neighbors contribute to the 

prediction procedure. Another benefit is the ability to change and optimize each dynamic interval without 

affecting other intervals. 

It should be noted that considering more intervals and thus optimizing more specific weights for each of the 

selected training neighbors would give better results for the modified KNN method but increasing the number of 

intervals grows the optimization time and therefore the computational cost. In this research, the number of 

intervals was assumed constant and the same number was used across all variations and tests. So, the number of 

intervals and their start points and end points were always the same. Selection of this number was done by trial 

and error and the best performing number of intervals was used in analyses.  

 

5. Concluding Remarks 

 
In this study, a novel approach for selecting neighbors in the KNN method and three techniques for prioritizing 

the contributing neighbors are introduced. The new approach called (DKNN) uses different number of neighbors 

for each prediction based on the greatness of the predictors. The proposed method was applied to predict two-

year daily inflow to the Gheshlagh dam in Iran. Result showed that the approaches using the dynamic selection 

had better performance than the classic KNN with added benefits. These benefits include selecting maximum 

number of neighbors for each prediction without sacrificing the performance of the whole procedure, increased 

number of selected neighbors gives the option for gaining more information and the ability to improve 

performance of certain intervals without changing the result of other intervals.  
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