Effective Parameters on Seismic Response of Intake Towers, Including Reservoir, Foundation and Dam Interactions

S.Resatalab¹, M.T.Ahmadi², M.Alembagheri³, N.Kamboozia⁴

1- Ph.D. Candidate, Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

2- Professor, Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

3-Associate Professor, Centre for Infrastructure Engineering, Western Sydney University, Sydney, Australia. On leave from Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

4-Associate Professor, Road and Transportation, Civil Engineering Department, Iran University of Science and Technology, Tehran, Iran

Email:S.Resatalab@modares.ac.ir

Abstract

In this paper, parameter sensitivity analysis of the dynamic response of cylindrical intake towers interacting with the concrete dam, foundation, internal and surrounding water is performed. The tower is modelled and verified using three-dimensional finite elements according to the Eulerian-Lagrangian approach in the time domain. In order to carry out a parametric study, Taguchi optimization method is employed to distinguish the most influential parameters. Thus, the iteration algorithm and number of numerical tests are designed. The models are tested under longitudinal horizontal excitation of selected reference accelerograms for hard. The evaluation of the results indicated that the two parameters, i.e. tower's slender ratio, and the surrounding water depth are the most effective factors on intake tower's top drift under seismic excitations on hard soil. It is observed that elasticity modulus of the foundation is another influential factor on the seismic response, as the tower's drift increases with the foundation's flexibility. Furthermore, the effect of dam interaction on the tower drift reduces as the distance from the dam increases and stays relatively constant for any distance higher than twice the tower's height. **Keywords: Intaketower, Interaction intake tower- dam- foundation, seismic response, Hydrodynamic pressure**

1. INTRODUCTION

Intake towers are of most importance among hydraulic structures in a dam-reservoir system. These are rather lean structures with either cylindrical or rectangular cross-sections at the vicinity of large dams, and surrounded by their reservoir water and usually containing internal water as well. However, in highly seismic areas, they are so much prone to damages due to both direct ground motion and the induced hydrodynamic pressure. In this paper, we study the sensitivity of free-standing intake towers to several geometric and material parameters.

In previous works, researchers first analytically evaluated the effects of water compressibility, surface waves and the popular "added mass" method on seismic response of the cylindrical intake tower with the fixed cross-section due to rigid ground harmonic motion. They have found that in the lower-frequencies of excitation, the effects of surface waves and water compressibility on slender towers are ignorable [1]. The latter has been found when the dam is not present in the vicinity of the tower. Liaw and Chopra used Finite-element method for the hydrodynamic solution of Laplace equation and developed an incompressible fluid formulation with reasonable boundary conditions [2]. Other works presented simplified added mass approach for calculating the hydrodynamic pressure on intake towers, while accounting for dynamic tower-water-foundation [3]. However, in their researches, the considered added mass for creating hydrodynamic pressure only included the effect of the tower vibration, and the effect of the large dam near the tower ignored. Moreover, the linear responses of the intake towers under the harmonic ground motion for different parameters, including geometry, internal and surrounding water and foundation system were idealized. Previous research on intake towers has analyzed towers that are anchored to the supporting foundation. Their results used in engineering manuals [4-8]. Milan et al. studied the dam body effect on the seismic response of a cylindrical intake tower on a rigid foundation in the reservoir-tower system. They observed an unpredicted resonance created on the tower response due to a modified added mass, caused by the tower-dam-reservoir interaction. This event was interpreted as the results of the added mass induced by reflective waves from the dam. Additionally, the phenomenon could alter the

natural frequencies of the tower and thus, the seismic response of the tower [9]. Alembagheri studied the seismic response of a sample intake tower with a cone frustum, including the dam and its foundation under different conditions of the reservoir water compressibility, distance from the dam, and foundation material. Furthermore, in the absence of the dam, vertical excitation did not affect the tower response, and for slender towers, foundation interaction was intensified when the dam was absent [10,11]. However, in his research, the effects of the tower geometry, as well as the different internal and surrounding water depths, were not evaluated. Indeed, simultaneous consideration of influential factors including the geometry of the tower has been less studied. In a recent research, an analytical solution for hydrodynamic pressure on the cylindrical tower with elliptical cross-section on a rigid foundation has been derived but without the presence of the dam. [12].

The goal of the current research is to examine the effects of different parameters on the seismic response of intake towers, the consistency of the idealized model of the system of the intake tower is verified under the Taft earthquake. After that, using Taguchi optimization method, the required test cases for a cylindrical intake tower with variable conditions including geometry, internal and surrounding water depth, foundation material and dam body distance are established in order to distinguish the most crucial parameters on the seismic response of the complete system.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

This section outlines the governing equations of the coupled fluid-solid interaction and its boundary conditions. The governing differential equation of the solid domain in the displacement-based Lagrangian formulation, assuming no static gravity load, is:

$$\nabla . \sigma - \rho_s \ddot{u} = 0 \tag{1}$$

Where σ is the Cauchy stress tensor, u is the displacement vector, ρ_s is the solid mass density, ∇

represents the Del operator, and (\ddot{u}) represents the second derivative with respect to time [13]. Using the pressure-based Eulerian formulation, assuming that the fluid as inviscid, linearly compressible, with small amplitude irrotational motion, the governing equation of the fluid domain can be represented as:

$$\nabla^2 p - \frac{1}{c^2} \ddot{p} = 0 \tag{2}$$

Where p is the hydrodynamic pressure in excess of hydrostatic pressure, c the acoustic wave velocity in the water, and $\nabla 2$ the Laplacian operator. In practice, the effects of surface gravity waves can be neglected in the analysis of high and slender intake tower, so the zero-pressure boundary, p=0. [1]. The boundary condition on the fluid–structure interface, considering no flow through the fluid–solid interface, can be written as:

$$\frac{cp}{\partial n} = -\rho_w \ddot{u}_n \tag{3}$$

Where ρ_w is water mass density, and n is the boundary surface outward normal vector. In the finite element formulation, the upstream infinite fluid domain should be truncated at a sufficient distance from the fluid–solid interface, where Non-reflective Sommerfeld boundary condition is employed [14]:

$$\frac{\partial p}{\partial n} = -\frac{1}{c}\dot{p} \tag{4}$$

The wave reflection at the bottom of the reservoir In the absence of the vertical and transversal direction acceleration can be written as[15]:

$$\frac{\partial p}{\partial n} = -\frac{1}{\beta c} \dot{p} \tag{5}$$

 β is acoustic impedance ratio of bottom to water acoustic impedance:

$$\beta = \frac{\rho_b \, \mathcal{L}_b}{\rho \mathcal{L}} \tag{6}$$

Where C is the water wave velocity, is represented in a simplified way using an absorption coefficient

α.

$$\frac{1}{\beta} = \frac{1 - \alpha}{1 + \alpha} \tag{7}$$

. That $\alpha = 0$ implies a non-reflective boundary and implies a fully reflective boundary. c_b is the Pwave velocity in the bottom of reservoir.

The tower is decidedly smaller than the foundation, so the foundation is modelled massless witheight nodes elements as a rectangular shape with a depth more than two times of the tower's height for observing the interaction behaviour.

3. SYSTEM MODEL VERIFICATION

.

The initial validity of the model is verified against Chopra and Goyal, for the case of the intake tower of the Briones dam response time history under Taft's earthquake [4]. Although they employed a novel added mass concept, instead of our rigorous hydrodynamic model, the considerable agreement is achieved between the two analyses as depicted in Figs. 4.

In this research, concrete Young's modulus of elasticity Es is 31 GN/m², unit weight is 24.3 kN/m³ and Poisson's ratio 0.17. The material properties of the foundation material include; shear wave velocity $C_f = 305$ m/s, unit weight =25.9 kN/m³, Poisson's ratio = 0.33 and a constant hysteretic damping factor of $\eta_f = 0.10$. According to Figure 4.

Table 1. Dif	ferent cases	of analysis o	of Briones Dam	Intake Tower	r to Taft g	round motion

Case	Surrounding Water Level	Inside Water Level	Foundation
1	none	none	flexible
2	normal	normal	flexible

Figure 3. Ground motion recorded at Taft, California, on hard soil, Earthquake July 21, 1952 [16]

Figure 4. Horizontal displacement at the Briones Tower top due to Taft (1952) excitation in model and reference [4]

4. NUMERICAL VALUES AND ANALYSIS CASES 4.1. MODEL AND PARAMETERS

Different parameters effects on the seismic response of the cylindrical intake tower with hydrodynamic, structural, and foundation interactions under horizontal longitudinal components of the Taft ground are studied [17]. The dam geometry is assumed as a triangular one with a vertical upstream face and a 0.8:1 slope at the downstream face. The dam and the tower heights are always the same, but variable in different cases. Reservoir transverse dimension is assumed to equal to B=300 meters.

Effects of eight different parameters are studied according to Table1-1 and figure 5,6 [18]. Tower heightH, along with some dimensionless parameters r/H and t/r corresponding the tower section internal radius r, and wall thickness t are considered. Moreover, for evaluating the transverse location of the tower in the reservoir, b/B parameter is used where b is the shortest distance of the tower from the reservoirvertical side banks. The effects of internal and surrounding water depths, diand D respectively, are also studied, using di/H and D/H quantities. Reservoir end boundary is always three times the tower height far from it, and foundation model extension is two times the tower's height. Foundation material parameter is considered by the E_c/E_f ratio where E_c and E_f are the concrete and the foundation elasticity moduli, respectively. Tower distance from the dam L, is also considered by the L/H ratio. For all the 8 latter parameters three different values belonging to appropriate ranges of variation are considered, as depicted in Table 2.

Figure 5. The geometry of the intake tower, dam, water and foundation system

Figure 6. Three-dimensional finite element model of the whole system

Table 2. System parameters and their selected values				
level	1	2	3	
b/B	0.25	0.5	-	
H (m)	50	100	150	
r/H	0.03	0.05	0.07	
t/r	0.15	0.175	0.2	
D/H	0.4	0.7	1	
di/H	0	0.4	1	
E_c/E_f	0	1	3	
L/H	1	2	3	

The assumed material properties for the dam and the intake tower are constant, including concrete modulus of elasticity $E_c = 3.45 \times 1010 \text{ N/m}^2$, Poisson ratio v=0.17, mass density $\rho=2480 \text{ kg/m}^3$, and damping ratio

 ξ =0.05. Water acoustic velocity C, and the mass density ρ_w , are equal to 1440 m/sand 1000 kg/m, respectively. The wave reflection coefficient at the bottom and the lateral boundaries of the reservoir α , is assumed equal to 0.9.

4.2 **OPTIMIZING THE NUMBER OF NUMERICAL EXPERIMENTS**

There are a variety of methods for designing experiments. The first is the full factorial method. However, this method requires quite a large number of cases far from and is expensive. Therefore, optimization of the number of the experiments should be considered. One of the practical techniques for optimum design of experiments is the Taguchi method, in which a selected group of orthogonal arrays of parameters values is presented [19].

The standard orthogonal arrays would prepare instruction for partial factorial experiments that includes several combined experiments. While the combinations of levels for all factors are in discussion, the standard orthogonal arrays would satisfy most of the experimental design requirements. Based on the selected eight

parameters and their levels in the Taguchi method, the orthogonal arrays $L_{18}(2^1 \times 3^7)$ are selected corresponding to seven parameters with three levels and a single parameter with two levels as seen in Table 3. Table 3. Test cases investigated according to the Taguchi method

case	b/B	H (m)	r/H	t/r	D/H	di/H	E_c/E_f	L/H
1	0.25	50	0.03	0.15	0.4	0	0	1
2	0.25	50	0.05	0.175	0.7	0.4	1	2
3	0.25	50	0.07	0.2	1	1	3	3
4	0.25	100	0.03	0.15	0.7	0.4	3	3
5	0.25	100	0.05	0.175	1	1	0	1
6	0.25	100	0.07	0.2	0.4	0	1	2
7	0.25	150	0.03	0.175	0.4	1	1	3
8	0.25	150	0.05	0.2	0.7	0	3	1
9	0.25	150	0.07	0.15	1	0.4	0	2
10	0.5	50	0.03	0.2	1	0.4	1	1
11	0.5	50	0.05	0.15	0.4	1	3	2
12	0.5	50	0.07	0.175	0.7	0	0	3
13	0.5	100	0.03	0.175	1	0	3	2
14	0.5	100	0.05	0.2	0.4	0.4	0	3
15	0.5	100	0.07	0.15	0.7	1	1	1
16	0.5	150	0.03	0.2	0.7	1	0	2
17	0.5	150	0.05	0.15	1	0	1	3
18	0.5	150	0.07	0.175	0.4	0.4	3	1

5. **RESULT DISCUSSION:**

Sensitivity analyses of the parameters are carried out in terms of the normalized maximum displacement of the tower top node (tower drift).

According to Figure.9, tower drift increases considerably when the tower position is more distant from the reservoir bank. This might be due to the effect of the reservoir bank partial absorption of the hydrodynamic energy. Interesting to notice that the higher the intake tower, the less its drift gets.

Figure 9. Main effects of different parameters on the tower drift based on hard soil (Taft 1952 record)

Parameters	Contribution (%)				
b/B	5.75				
H (m)	9.43				
r/H	28.78				
t/r	1.70				
D/H	23.79				
di/H	7.21				
E_c/E_f	21.18				
L/H	2.15				
Total	100%				

Table 4. Contribution of parameters due to variance analysis

According to the statistical analysis on test results of the hard soil cases, the r/H ratio is the most critical parameter for the tower drift, with a share value of 28.78 %. The response of slender intake tower with r/H=0.03 has more than to the other as with past research. The other important note is that the reducing trend from r/H=0.05 stays nearly constant. Of course, it requires other ratios to evaluate carefully. The tower wall thickness parameter, t/r ratio has the least effect on the seismic response of the intake tower with only a 1.7 % share. However, the tower's thickness has a minimum amount, that is mean the optimized thickness of the tower for minimum drift is t/r=0.175 for any similar situation to this experiment. According to the results, the second

most effective parameter in the seismic response of the intake tower is the D/H ratio with 23.79 %, pertaining increased drift with increased reservoir depth, or hydrodynamic significance. Generally, the most critical drifts of the towers happen when the reservoir of the concrete dam is at its highest level.

Moreover, the tower internal water level parameter, i.e., the di/H ratio is also directly increasing the tower drift but with a lower rate than that of the surrounding reservoir. The foundation flexibility parameter, E_c/E_f ratio, is the third most effective parameter with a 21.18 % share by a direct proportion, similar to previous researches results[4].

According to Figure.9 when the distance from the concrete gravity dam increases, the drift reduces, but remains approximately constant for distances more than twice the height of the tower. Of course, this result corresponds to horizontal actuation, as described in the past researches, while the vertical or combined excitation requires additional studies. [10].

5. CONCLUSIONS

In this article, different parameter sensitivities on the dynamic response of cylindrical intake tower interacting with its internal and surrounding water, foundation, and the nearby concrete dam, is studied. For this purpose, the effect of different geometrical, material and loading parameters on the tower top drift are studied after verification of the model employed through 3D-dimensional finite elements using Eulerian-Lagrangian approach in the time domain. The parameters in the current research include the height, the section radius and the wall thickness of the tower, as well as its internal and external water depth, foundation material flexibility, and the transverse and longitudinal positioning of the structure in the reservoir for a range of possible variations. Taguchi optimization method for the design of experiments is employed to reduce the number of the experiments drastically, and distinguish the most influential parameters in terms of the two major decisive response components. The study corresponds to longitudinal horizontal excitations records of hard soil conditions. The investigation of the results indicated that the two parameters of the slender tower ratio and the surrounding water depth were the most effective factors on intake tower top driftrespectively under Taft record on hard soil. According to the experimental results, t/r=0.175 is selected as the optimized thickness for designing the tower wall thickness. Moreover, for horizontal excitation, the effect of the tower placement in the reservoir width could be neglected. The presence of the internal water is influential but weaker than the effect of the surrounding water. It is observed that the foundation material, is another influential factor on the seismic response, and the tower drift increases with its flexibility. The dam body interaction effect on the tower drift reduces as the distance from the dam increases and stays relatively constant for any distance higher than twice the height of the intake tower.

6. **REFERENCES**

1. Liaw, C.Y., Chopra, A.K., Dynamics of towers surrounded by water. Earthquake Engineering & Structural Dynamics. 1974. 3(1). Pp. 33-49.

2. Liaw, C.Y. Chopra AK. Earthquake analysis of axisymmetric towers partially submerged in water. Earthquake Engineering & Structural Dynamics. 1974. 3(3). Pp. 233-248.

3. Goyal, A., Chopra, A.K. Earthquake analysis of intake-outlet towers including tower-water-foundation-soil interaction. Earthquake engineering & structural dynamics. 1989. 18(3) .Pp. 325-344.

4. Goyal, A., Chopra, A.K. Hydrodynamic and foundation interaction effects in dynamics of intake towers: earthquake responses. Journal of Structural Engineering. 1989. 115(6). Pp. 1386-1395.

5. Goyal, A., Chopra, A.K. Hydrodynamic and foundation interaction effects in dynamics of intake towers: frequency response functions. Journal of Structural Engineering. 1989 Jun. 115(6). Pp. 1371-1385.

6. Goyal, A., Chopra, A.K. Simplified evaluation of added hydrodynamic mass for intake towers. Journal of Engineering Mechanics. 1989 Jul. 115(7). Pp. 1393-1412.

7. U.S. Army Corps of Engineers. Seismic Analysis of Intake Towers Considering Multiple-Support Excitation and Soil-Structure Interaction Effects. 2004. ERDC/GSL TR-04-16.

8. U. S. Army Corps of Engineers Structural Design and Evaluation of Outlet Works. 2003. EM 1110-2-2400.

9. Millan, M.A., Young, Y.L., Prevost, J.H. Seismic response of intake towers including dam-tower interaction. Earthquake Engineering & Structural Dynamics. 2009. 38(3). Pp. 307-329.

10. Alembagheri, M. Dynamics of submerged intake towers including interaction with dam and foundation. Soil Dynamics and Earthquake Engineering. 2016. 84. Pp.108-119.

11. Alembagheri, M. Earthquake response of solitary slender freestanding intake towers. Soil Dynamics and Earthquake Engineering. 2016. 90. Pp. 1-4.

12. Wang, P., Zhao, M., Du, X. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water. Ocean Engineering. 2018 Jan 15. 148. Pp 149-160.

13. Sommerfeld, A. Lectures on theoretical physics, Vol. I. Academic Press, New York. 1964.

14. Sommerfeld, A. Partial differential equations in physics. Vol. 1. Academic press. 1949.

15. Fenves, G., Chopra, A.K. Effects of reservoir bottom absorption on earthquake response of concrete gravity dams. Earthquake engineering & structural dynamics. 1983 Nov. 11(6). Pp. 809-829.

16. URL:http://ngawest2.berkeley.edu.

17. Hibbit K. Abaqus Theory Manual. Version 6.8. ABAQUS, Inc.: Providence, RI, USA. 2008.

18. U.S. Army Corps of Engineers ,Structural Parameter Analysis of Existing Intake Tower Inventory. Technical Report. 1996. SL-96-1.

19. Roy, RK. A primer on the Taguchi method. Society of Manufacturing Engineers. 2010.