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aBStRact
The Advanced Structural Analysis (ASA) has become a primary tool in structural assessments of concrete 
dams. Expanded computing power currently available to engineers allows conducting com-plex structural 
simulations of dam behavior for static and seismic loads, which are used to describe the potential failure 
modes of the structure. The outcome of such analyses serves as a baseline for estimating risk in dam safety 
investigations.
In this paper, a road map for the ASA of concrete dams is presented, together with a general dis-cussion on the 
uncertainties of such analyses. A hierarchy of computational model verifications of concrete dam simulations is 
also discussed. The authors start with a general discussion on conceptual and mathematical models for concrete 
dams and verification tests for computational models. In addi-tion, available physical tests are reviewed, and 
their suitability for validation is assessed.
Finally, a flowchart (road map) for modeling and simulation of concrete dams is presented. Exam-ples are used 
to illustrate the points discussed above, and draft practical guidelines are presented with the aim of stimulating 
further discussion.

1. intRoduction
The Advanced Structural Analysis (ASA), defined here as a static or dynamic analysis with nonline-arities, is an essential 
part of a risk assessment for concrete dams. During the last three decades, time history analyses with material and 
geometric nonlinearities, together with nonlinear boundary condi-tions, have been increasingly used in the engineering 
practice. Technical complexity and mathemati-cal advancement of such analyses require the analysts to have a high-
level technical education, knowledge and experience in numerical solutions of structural problems, good skills in using 
the software, and expertise in concrete dams.
The primary concern is the level of confidence in modeling and the accuracy evaluation of the analysis results. Verification 
and validation (V&V) of such computational simulations are the primary methods used to build such confidence and are 
used for quantifying accuracy of the solutions.
Importance of the V&V process in the ASA of concrete and earth dams has been emphasized and discussed in various 
publications of the International Commission on Large Dams (ICOLD) (ICOLD 1994, ICOLD 2001, ICOLD 2013) and 
at ICOLD and the United States Society of Dams (USSD) benchmark workshops.

2.  RoadMap foR advanced StRuctuRal analySiS
The ASA of concrete dams requires application of a unique approach that differs significantly from the techniques used 
in common engineering practice. In order to develop confidence in the results of the ASA, it is vital that analysts using 
commercial programs have an in-depth understanding of the terminology and principles used in the ASA.
The general road map for the ASA, as it applies to concrete dams, is presented in the flowchart (Fig. 1). Although the key 
terms used in Figure 1 are primarily based on definitions provided in ASTM 2006 and ICOLD 2013, some terms were 
adapted or enhanced for specific application to ex-isting concrete dam analyses. In this paper, the authors are presenting 
the V&V procedure for the ASA of concrete dams based primarily on the ASME concept.
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Figure 1. Road map for the ASA of existing concrete dams.

An interpretation of the flowchart in Figure 1 begins with the Real object, which represents the 
physical dam structure, foundation, and reservoir together with all the operating conditions.

A conceptual model is a “virtual image” of the real object. The conceptual model of an existing 
concrete dam is defined by the nominal dimensions, estimated material properties, and the loads act-
ing on the dam in a form of pressure, body loads, seismic excitations, and temperature. Parametric 
uncertainties, that originate from variability in material properties, loads, and the model geometry, 
are taken into account by model calibration.

The mathematical model, expressed by a system of partial differential equations with the boundary 
and initial conditions, is a mathematical representation of the conceptual model.

The computational model is represented by the analytical or numerical solutions of the mathemat-
ical model. The number of the available analytical solutions related to concrete dam modeling is very 
limited; as a result, in such simulations the numerical methods are commonly used instead. The pri-
mary uncertainties in the analysis are related to selection of the proper numerical method and its 
parameters, convergence of such method, and estimations of solution accuracy.

The computer program (Software) is an automatization process of the computational model.
The V&V process is of particular importance in the advanced analysis. It starts with the realization 

of uncertainties introduced into analysis through simplifying assumptions made for the conceptual, 
mathematical, and computational models.

Calibration is a process of adjusting physical parameters in the conceptual model to improve agree-
ment with experimental data (Oberkampf et al. 2010) or the field measurements. It is assumed that if 
most physical parameters of the conceptual model are properly calibrated, simulation results will well 
represent realistic behavior of the real object.

In addition, a very important aspect of the ASA is proper interpretation of the analysis results and 
presentation of those results in terms commonly used by the engineering community. Accurate post-
processing and proper presentation of the analysis results are critical for defining confidence in risk 
estimations and for enabling regulatory agencies (decisionmakers) to take appropriate action.

3 veRification and validation

3.1 Overview
A variety of definitions exist for the term “verification and validation” in the various technical disci-
plines. Oberkampf and Roy (Oberkampf et al. 2010) provide a historical overview of the fundamental 
terminology and present a general concept of the V&V associated with solid mechanics.

The first definition of V&V was formally developed by the Society of Computer Simulation in 
1979. The definition was then enhanced by the Institute of Electrical and Electronics Engineers and
the U.S. Department of Defense (DoD) in the 1980s. A Guide for the Verification and Validation of 
Computational Fluid Dynamic Simulation, published by the American Institute of Aeronautics and 
Astronautics in 1998 (AIAA 2002), was the first document defining key terms and standardizing the 
methodology in V&V. Similarly, for the applications to solid mechanics, a Guide for Verification and 
Validation in Computation Solid Mechanics was published by the American Society of Mechanical 
Engineers (ASME 2006), defining verification as the process of determining that a computational 
model accurately represents the underlying mathematical model and its solution. A common
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perspective of the intended uses of the model. The concept of verification and validation in computational solid mechan-
ics is illustrated in ASME (2012).
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The terms verification and validation are very often used interchangeably in common engineering language; however, 
they describe two different types of activities. The difference between verifica-tion and validation is explained best by 
Roache (1998) where:
•  Verification means solving the equations right.
•  Validation means solving the right equations.
ICOLD bulletins (ICOLD 1994, ICOLD 2001, ICOLD 2013) use the terms verification, validation, and justification for 
the software qualification, however, they do not refer any of the DoD, AIAA, or ASME publications on the subject.

3.2  Verification of ASA for concrete dams
Referring to the ASME guide (ASME 2006), verification could be otherwise described as a process of determining that the 
computational model correctly and accurately represents the mathematical model and its solution. Structural engineers, 
analysts, program users, and software developers verify that the computational model is correctly implemented in the 
computer programs.
There are several techniques that can be utilized to verify computational models implemented in computer software 
(Bathe 1980, CSB 2003, Noh et. al 2013). Some practical methods for verifying the ASA for concrete dams include:
•  Check the input parameters,
•  Check the computation results for symmetry, conservation of energy, and general structure behavior,
•  Test sub-models of a conceptual model – each feature of the computational model is veri-fied separately (for an 

example, refer to Section 4),
•  Compare the results with analytical solutions, if such results are available (refer to the example in Section 4),
•  Compare software-to-software – conduct analyses with various software (refer to the ex-ample in Section 4),
•  Perform sensitivity studies – compare analysis results for a range of settings and a range of model parameters (refer 

to the example in Section 4),
•  Compare the results with a suite of benchmark tests specific for concrete dam structures (USSD and ICOLD 

benchmark workshops),
•  Evaluate discretization error evaluation,
•  Perform convergence tests,
•  Perform order-of-accuracy test.
Some aspects related to verification of the computer software are covered by the software devel-oper quality control/
quality assurance program. Although such a quality control procedure is a stand-ard practice in development of the 
commercial software, relying on such a procedure alone is not sufficient to build confidence in using the software for 
engineering applications. The engineer/analyst conducting the ASA for concrete dams is fully responsible for selecting 
and properly using the soft-ware, as well as for verifying and delivery accurate analysis results.

3.3 Validation of ASA for concrete dams
According to ASME (2006), validation could be described as a process of determining the degree to which a conceptual 
model is an accurate representation of the real world for the intended use for physical phenomena that is modeled. The 
validation process provides evidence that the selected con-ceptual model is correct.
For the ASA of concrete dams, validation takes place by using the field measurement data obtained from the real dam 
structures and/or their components, as well as from the laboratory model test results. It focuses on assessing the accuracy 
of mathematical models via experimental measurements.
Validation is a very important part of the V&V analysis procedure for concrete dams. Because it requires special attention 
and enhanced discussion, the authors will elaborate on the subject in a sep-arate publication.

4. Road Map foR concRete daM advanced StRuctuRal analySiS

4.1  Pine Flat Dam
The road map (Fig. 1) and the V&V procedure are illustrated in this section using the Pine Flat con-crete dam as an 
example. The dam, constructed in California in 1954, consists of 36 monoliths with a width of 15.25 m and 1 monolith 
with a width of 12.2 m. The length of the straight gravity dam is 561 m, and the tallest nonoverflow monolith is 122 m 
high.

4.2  Conceptual dam model
The conceptual model of Pine Flat Dam (Fig. 2), considered in this article, was defined in the ICOLD 2019 Benchmark 
Workshop formulation for Theme A. The 2D model shown in Figure 2 consists of a 122-m-high concrete dam structure 
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crete dam as an example. The dam, constructed in California in 1954, consists of 36 monoliths with 
a width of 15.25 m and 1 monolith with a width of 12.2 m. The length of the straight gravity dam is 
561 m, and the tallest nonoverflow monolith is 122 m high.

4.2 Conceptual dam model
The conceptual model of Pine Flat Dam (Fig. 2), considered in this article, was defined in the ICOLD
2019 Benchmark Workshop formulation for Theme A. The 2D model shown in Figure 2 consists of 
a 122-m-high concrete dam structure and a 700-m-wide and 122-m-deep foundation block. For the 
same concrete and rock elastic material properties (modulus of elasticity: 22,410 MPa; density: 2,483 
kg/m3; Poisson ratio: 0.2; shear wave velocity: 1,939 m/s), a seismic excitation is applied at the base 
of the foundation. 

Figure 2. Conceptual model of Pine Flat Dam.

The investigation’s primary interest relates the seismic wave propagation in a semi-infinite elastic 
space and the analysis problems that arise when using reduced-domain models of a semi-infinite me-
dium. Thus, an absorbing boundary condition must be applied to the side and base of the foundation 
to avoid artificially trapping seismic energy within the finite-domain model. In this analysis, we used
a variation of the boundary condition described by Lysmer and Kuhlemeyer (Lysmer et al. 1969). An 
additional, so-called free-field boundary condition is needed for the reduced-domain model to keep 
the motions at the side boundaries equivalent to what they would be in the semi-infinite medium. 

4.3 Mathematical model
In the continuum theory of mechanics, the set of basic equations (which includes equations of 

motions, geometric equations, and material constitutive law, together with boundary and initial 
conditions) defines a mathematical formulation of the conceptual model of Pine Flat Dam. Applying 
the standard procedure for derivation of the virtual power principle and considering geometric 
relationships between the displacements and strains, constitutive equations, and the initial conditions, 
the finite element (FE) discretization of the Galerkin variational formulation of the preceding 
equations results in the following system of second order differential equations: 

where: Ms, Cs, and Ks, are the mass, damping, and stiffness matrices, respectively.

The unknown vector of nodal variable u represents the relative displacements at the nodes of the 
FE mesh. Vector fg =MSÜg contains forces generated by the ground acceleration applied to the 
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(Lysmer et al. 1969). An additional, so-called free-field boundary condition is needed for the reduced-domain model to 
keep the motions at the side boundaries equivalent to what they would be in the semi-infinite medium.

4.3  Mathematical model
In the continuum theory of mechanics, the set of basic equations (which includes equations of motions, geometric 
equations, and material constitutive law, together with boundary and initial conditions) defines a mathematical 
formulation of the conceptual model of Pine Flat Dam. Applying the standard procedure for derivation of the virtual 
power principle and considering geometric relationships between the displacements and strains, constitutive equations, 
and the initial conditions, the finite element (FE) discretization of the Galerkin variational formulation of the preceding 
equations results in the following system of second order differential equations:

where: Ms, Cs, and Ks, are the mass, damping, and stiffness matrices, respectively.
The unknown vector of nodal variable u represents the relative displacements at the nodes of the FE mesh. Vector  
fg = MSÜg contains forces generated by the ground acceleration applied to the
model. Vector Fp represents the reservoir induced hydrodynamic forces acting on the upstream face of the dam, and it 
is related to the unknown vector of nodal pressures.

4.4  Computational model
To solve the mathematical problem formulated in the section 4.3 the time domain, both the implicit and explicit methods 
are employed. For the fluid-structure interaction, the “acoustic fluid” approach and the “fluid-like material model” 
approach are implemented.

4.5 Software
In this paper, verification is conducted by using the two commercial FE programs LS-DYNA (https://www.lstc.com/
products/ls-dyna) and DIANA (https://dianafea.com/), and a software Real-ESSI (real-essi.info), developed at the 
University of California at Davis.

4.6 Solution
The analysis results for the Pine Flat Dam benchmark study were submitted by the authors of this paper (Salamon et 
al. 2019) and (Yang et al. 2019) to the workshop organizers and, together with 30 other contributions, were presented 
during the workshop in Milan, Italy, in September 2019. The benchmark results are summarized in the workshop 
proceeding; therefore, they are not duplicated in this paper. To illustrate selected aspects of the verification process, 
however, additional studies have been completed and are presented in Section 5 below.
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5. illuStRation of veRification pRoceSS

5.1  Sub-modelling
In the initial phase of the verification process, the conceptual model of Pine Flat Dam (Fig. 2) is separated into two sub-
models: (1) the dam-reservoir and (2) the foundation block system. The fluid-structure interaction for the dam-reservoir 
submodel was examined previously by Salamon & Manie (Salamon et al. 2017); therefore, it is not presented in this 
paper, however, a detailed description of the verification process for the foundation block system sub-model is further 
explained below.

5.2  Verification of the sub-model
Verification of the foundation block sub-model is selected to examine problems of using reduced-domain models of 
a semi-infinite medium. The authors use a FE analysis to simulate a pulse wave propagation in an elastic medium. In 
the comparison study, the model with “nonreflecting” (absorb-ing) boundary conditions only, and with the combined 
absorbing and free-field boundary conditions at the block sides, is investigated.
The verification procedure for the foundation block sub-model presented in this paper includes:
•  Comparing the FE analysis results with an analytical solution,
•  Comparing the analysis results obtained by various FE programs,
•  Performing a parametric study for various mesh sizes and different time steps.

5.2.1 Comparison with analytical solution
The free-surface motion at the top of the foundation (points a, c, e, and g, as shown in Figure 3) can be determined 
theoretically from the equivalent upgoing motion in an elastic homogeneous half-space. The incident motion in the 
form of a high-frequency pulse record (Fig. 4) is a vertically-prop-agating plane S-wave, and the theoretical free-surface 
motion is simply twice the upgoing wave. The theoretical motion is the same at all points on the free surface.

5.2.1 Comparison with analytical solution
The free-surface motion at the top of the foundation (points a, c, e, and g, as shown in Figure 3) can 
be determined theoretically from the equivalent upgoing motion in an elastic homogeneous half-
space. The incident motion in the form of a high-frequency pulse record (Fig. 4) is a vertically-prop-
agating plane S-wave, and the theoretical free-surface motion is simply twice the upgoing wave. The 
theoretical motion is the same at all points on the free surface.

Figure 3. Foundation block sub-model with indicated boundary conditions. High-frequency, horizontal velocity, 
pulse upward propagation shows nonuniform wave distribution along the foundation width when the free-field 
boundary conditions are not applied to the block sides.

Figure 4. Velocity impulse time history and its Fourier amplitude spectrum.

Results comparing the computed and theoretical free-surface motions at points a, c, e, and g for the 
high-frequency pulse (Fig. 4) are shown in Figures 5-6 for the free-field and nonreflecting boundary 
conditions (Salamon et al. 2019) and (Yang et al. 2019).

Figure 5. Velocity time history at points a, c, e, and g per Figure 3 for nonreflecting (left) and free-field (right) 
boundary conditions.
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propagation shows nonuniform wave distribution along the foundation width when the free-field boundary conditions are not 

applied to the block sides.

5.2.1 Comparison with analytical solution
The free-surface motion at the top of the foundation (points a, c, e, and g, as shown in Figure 3) can 
be determined theoretically from the equivalent upgoing motion in an elastic homogeneous half-
space. The incident motion in the form of a high-frequency pulse record (Fig. 4) is a vertically-prop-
agating plane S-wave, and the theoretical free-surface motion is simply twice the upgoing wave. The 
theoretical motion is the same at all points on the free surface.

Figure 3. Foundation block sub-model with indicated boundary conditions. High-frequency, horizontal velocity, 
pulse upward propagation shows nonuniform wave distribution along the foundation width when the free-field 
boundary conditions are not applied to the block sides.

Figure 4. Velocity impulse time history and its Fourier amplitude spectrum.

Results comparing the computed and theoretical free-surface motions at points a, c, e, and g for the 
high-frequency pulse (Fig. 4) are shown in Figures 5-6 for the free-field and nonreflecting boundary 
conditions (Salamon et al. 2019) and (Yang et al. 2019).

Figure 5. Velocity time history at points a, c, e, and g per Figure 3 for nonreflecting (left) and free-field (right) 
boundary conditions.

figure 4 : Velocity impulse time history and its Fourier amplitude spectrum.

Results comparing the computed and theoretical free-surface motions at points a, c, e, and g for the high-frequency 
pulse (Fig. 4) are shown in Figures 5-6 for the free-field and nonreflecting boundary conditions (Salamon et al. 2019) 
and (Yang et al. 2019).
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Figure 6. Spectra comparison at points a, c, e, and g per Figure 3 for nonreflecting (left) and free-field (right) 
boundary conditions.

Results obtained from models with free-field boundary conditions are in very good agreement with 
the theoretical solution (right side of Figs. 5-6). The uniformly applied wave at the base of the function 
block remains uniform at the top of the foundation block. For “nonreflecting” boundary conditions, 
however, the relatively good agreement with the theoretical solution is observed only at the center of 
the foundation block, with significant differences at the distance away from the block center (Figs. 3,
5 (left), and 6 (left)).

5.2.2 Comparison results obtained with various FE programs
The analysis is validated here by comparing the results obtained by 3 FE programs listed in Sec-
tion 4.5 (Software). The results comparing the computed free-surface velocities at points a, c, e, and 
g of the foundation block sub-model for the high-frequency pulse (Fig. 4) are shown in Figure 7. The 
difference in the results is primarily related to the type of boundary conditions implemented in each 
of these FE programs.

Figure 7. Distribution of horizontal maximum and minimum peak velocities at points a, c, e, and g of the foun-
dation block. Results for the free-field boundary conditions are indicated by “f,” the nonreflecting boundary 
conditions by “n,” and the theoretical solution by the blue dashed line.

The plot of velocity “n” in points e and g in Figure 7 is related to the contour map of the velocity 
wave shown in Figure 3. The analysis shows that the nonreflecting boundary conditions do not 
properly model a seismic wave propagation of a semi-infinite medium.

Figure 6. Spectra comparison at points a, c, e, and g per Figure 3 for nonreflecting (left) and free-field (right) 
boundary conditions.

Results obtained from models with free-field boundary conditions are in very good agreement with 
the theoretical solution (right side of Figs. 5-6). The uniformly applied wave at the base of the function 
block remains uniform at the top of the foundation block. For “nonreflecting” boundary conditions, 
however, the relatively good agreement with the theoretical solution is observed only at the center of 
the foundation block, with significant differences at the distance away from the block center (Figs. 3,
5 (left), and 6 (left)).

5.2.2 Comparison results obtained with various FE programs
The analysis is validated here by comparing the results obtained by 3 FE programs listed in Sec-
tion 4.5 (Software). The results comparing the computed free-surface velocities at points a, c, e, and 
g of the foundation block sub-model for the high-frequency pulse (Fig. 4) are shown in Figure 7. The 
difference in the results is primarily related to the type of boundary conditions implemented in each 
of these FE programs.

Figure 7. Distribution of horizontal maximum and minimum peak velocities at points a, c, e, and g of the foun-
dation block. Results for the free-field boundary conditions are indicated by “f,” the nonreflecting boundary 
conditions by “n,” and the theoretical solution by the blue dashed line.

The plot of velocity “n” in points e and g in Figure 7 is related to the contour map of the velocity 
wave shown in Figure 3. The analysis shows that the nonreflecting boundary conditions do not 
properly model a seismic wave propagation of a semi-infinite medium.

figure 5 : Velocity time history at points a, c, e, and g per Figure 3 for nonreflecting (left) and free-field  
(right) boundary conditions.

figure 6 : Spectra comparison at points a, c, e, and g per Figure 3 for nonreflecting (left) and free-field (right) boundary conditions.

Results obtained from models with free-field boundary conditions are in very good agreement with the theoretical 
solution (right side of Figs. 5-6). The uniformly applied wave at the base of the function block remains uniform at the 
top of the foundation block. For “nonreflecting” boundary conditions, however, the relatively good agreement with the 
theoretical solution is observed only at the center of the foundation block, with significant differences at the distance 
away from the block center (Figs. 3, 5 (left), and 6 (left)).

5.2.2 Comparison results obtained with various FE programs
The analysis is validated here by comparing the results obtained by 3 FE programs listed in Sec-tion 4.5 (Software). 
The results comparing the computed free-surface velocities at points a, c, e, and g of the foundation block sub-model for 
the high-frequency pulse (Fig. 4) are shown in Figure 7. The difference in the results is primarily related to the type of 
boundary conditions implemented in each of these FE programs.

figure 7 : Distribution of horizontal maximum and minimum peak velocities at points a, c, e, and g of the foun-dation block. 
Results for the free-field boundary conditions are indicated by “f,” the nonreflecting boundary conditions by “n,”  

and the theoretical solution by the blue dashed line.
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figure 8 : Input Ricker wavelet signal in time and frequency domain.

Figure 9 shows the influence of time step size of 0.001, 0.05, and 0.01 second on the recorded accelerations at the center 
of the block upper surface (point a, Figure 3) for the uniform mesh size of 2 m. For the 0.001 second time step, the 
computed accelerations are in very good agreement with the theoretical solution, but they vary for larger time steps of 
0.01 second and 0.005 second.

The plot of velocity “n” in points e and g in Figure 7 is related to the contour map of the velocity wave shown in Figure 
3. The analysis shows that the nonreflecting boundary conditions do not properly model a seismic wave propagation of 
a semi-infinite medium.

5.2.3 Parametric study for time step size and finite element mesh size
This set of results shows the influence of a time integration step size and the FE mesh size on propa-gation of a simple 
Ricker wavelet with predominant frequency of 25 Hz. The main reason for using Ricker wavelet is that it contains a 
clean, simple signal; thus, any deviation from the signal in the propagated wave becomes obvious. The wave signal was 
applied to the base of the foundation block sub-model with constraints applied (Fig. 3).
Figure 8 shows input Ricker wavelet signal that was used as a surface seismic motions record that was then deconvoluted 
to the foundation block bottom, and then propagated upward, using the Do-main Reduction Method (Bielak et al. 2003). 
Wave propagation was only considered for one component of a shear wave polarized in vertical plane.
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gation of a simple Ricker wavelet with predominant frequency of 25 Hz. The main reason for using 
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Figure 8. Input Ricker wavelet signal in time and frequency domain.

Figure 9 shows the influence of time step size of 0.001, 0.05, and 0.01 second on the recorded 
accelerations at the center of the block upper surface (point a, Figure 3) for the uniform mesh size of 
2 m. For the 0.001 second time step, the computed accelerations are in very good agreement with the 
theoretical solution, but they vary for larger time steps of 0.01 second and 0.005 second.  

Figure 9. Influence of time step size on propagation of a Ricker wavelet at point a of Figure 3.

figure 9 : Influence of time step size on propagation of a Ricker wavelet at point a of Figure 3.

Figure 10 presents computed accelerations at the center of the upper surface of the foundation block with the uniform 
FE mesh sizes of 2, 5, and 10 m and the time step of 0.001 second. Very good agreement between the FE analysis results 
and the theoretical solution was obtained for 2-m mesh, and relatively good agreement was obtained for 5-m mesh size. 
Significant variations between the theoretical and FE commutations are observed for the 10-m mesh.
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Figure 9 shows the influence of time step size of 0.001, 0.05, and 0.01 second on the recorded 
accelerations at the center of the block upper surface (point a, Figure 3) for the uniform mesh size of 
2 m. For the 0.001 second time step, the computed accelerations are in very good agreement with the 
theoretical solution, but they vary for larger time steps of 0.01 second and 0.005 second.  

Figure 9. Influence of time step size on propagation of a Ricker wavelet at point a of Figure 3.
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Figure 10 presents computed accelerations at the center of the upper surface of the foundation block 
with the uniform FE mesh sizes of 2, 5, and 10 m and the time step of 0.001 second. Very good 
agreement between the FE analysis results and the theoretical solution was obtained for 2-m mesh, 
and relatively good agreement was obtained for 5-m mesh size. Significant variations between the 
theoretical and FE commutations are observed for the 10-m mesh. 

Figure 10. Influence of finite element mesh size on propagation of a Ricker wavelet at point a of Figure 3.

6 SuMMaRy and concluSSionS

The ASA is an important method in structural assessments of concrete dams and in risk estimations
of dam safety investigations. Accuracy and confidence in the outcome are the primary concerns of 
such analyses conducted by the FE programs. In this paper, a road map for the ASA, as it applies to 
existing concrete dams, is provided, together with general guidelines for verification of the computa-
tions, illustrated for a case involving the Pine Flat concrete dam. Also, definitions of related termi-
nology are provided to clarify and unify terms that are not always correctly used in common engi-
neering language. 

It is important that FE programs, including the commercial software, are verified by the analysts 
before they are used in the structural analysis of dams. The authors outline a path by which the com-
putational model or its sub-model can be tested against any available theoretical solution, compared 
with the results obtained by other programs, or evaluated by parametric studies.

Although this paper may not address all aspects related to the ASA of concrete dams, it may con-
tribute to a discussion on developing unified guidelines for verification and validation of detailed FE
analysis for concrete dams. The focus of these guidelines will be on establishing accuracy, credibility, 
and confidence in the results of concrete dam modeling and simulations intended: (1) to be used in 
dam safety risk estimations and (2) to support policy decisions for approval of potential modifications.
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