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ABSTRACT
Roller Compacted Concrete dams or RCC dams are common practice in dam engineering. Due to different 
methods of construction for placement of RCC layers, different behaviors are assumed for this type of dams. 
This difference in method of placement, could yield to weaker bonding between layers of RCC. In order to 
take this condition into account and be able to obtain more realistic behavior from RCC dams, continuous 
assumption for body of dam is insufficient and a more sophisticated model is required. Thus, a model capable 
of considering these weak layers in numerical simulation of the dam is presented in this paper. Using nonlinear 
behavior of lift joints, weak planes within body of the dam are assumed and seismic responses are compared 
to simple homogeneous model. Results show that considering the effects of these weak layers has considerable 
effect on stress distribution of the body of the dam.
Keywords : concrete gravity dam, nonlinear seismic analysis, RCC dams, lift joints.

1.	I NTRODUCTION
Sensitivity of design and analysis of structures is directly influenced by the level of importance and expected services 
from the structure. Accordingly, complex structures such as concrete dams, which serve a variety of purposes from 
irrigation to electricity production and flood control, should be carefully designed and analyzed. Concrete dams, whether 
they are of arch type or gravity type, are built from plain concrete and no reinforcements are included in the dam body. 
Therefore, careful analysis of these structures is even more important because of cracking concerns in concrete due to 
low tensile strength. 
One of the main loadings experienced during the lifetime of concrete dam, more specifically concrete gravity dams, 
is earthquake loading. Generally, largest levels are stress in dam body are produced due to severe level earthquakes. 
Therefore, a comprehensive seismic analysis, as close to reality as possible, is of paramount importance. 
When dealing with the problem of seismic analysis of concrete gravity dams, a coupled system of solid and fluid 
is imagined. There are still aspects of seismic analysis of concrete gravity dams that are currently based on over-
simplified assumptions. One of these over-simplified assumptions is related to the state of concrete dam body in nature. 
One widely used and practical assumption in numerical simulation of concrete gravity dams is that the dam body is 
made of homogeneous plain concrete. Although this is almost a good assumption for conventional gravity dams, it 
loses its viability when dealing with Roller-Compacted Concrete dams or RCC dams. Because of special method of 
construction in RCC dams, which involves fast placement of thin layers of concrete over one another in short intervals, 
the homogenous assumption would cause inaccurate behaviors for dam body. Therefore the need to account for such 
condition is sensible. 

ICOLD Symposium on Sustainable Development of Dams and River Basins, 24th - 27th February, 2021, New Delhi

INCOLD



2

Symposium on Sustainable Development of Dams and River Basins, 24th - 27th February, 2021, New Delhi

3

On the subject of seismic analysis of RCC dams with consideration of influential parameters few number of studies have 
been presented.  Seismic simulation of an RCC dam has been carried out by Liapichev (2003) for MDE and MCE level 
earthquakes. The study concludes that for MCE level earthquake, nonlinear behavior of dam body as well as opening 
of RCC joints in bottom half of the dam is expected. Considering hydrodynamic pressure, Bayraktar et al. (2009) 
investigated the effects of considering near and far-fault ground motions on seismic performance of an RCC dam. Huang 
(2010) performed a dynamic analysis on Jin’anqiao RCC gravity dam. 
In this paper, a nonlinear seismic analysis of an existing RCC concrete dam is performed. The task is done under two 
conditions which include homogenous behavior for dam body versus consideration of non-perfect bonding between 
layers of RCC in dam body. To solely focus on the effects of lift joints on response, material is assumed to be linear for 
dam and foundation. Response of dam in two cases are closely compared. Using a correct earthquake input mechanism, 
domain reduction method or DRM (Bielak et al. (2003) and Yoshimura et al. (2003)) is utilized to account for wave 
propagation effects in the system.  

2.	M athematical perliminery

2.1	D omain Reduction Method
DRM is a two-step formulation to obtain the seismic response of any structure with any condition. This method is 
capable of accounting for wave propagation effects in any environment. Since seismic waves need a massed medium 
to propagate, therefore this method can account for foundation mass as well.  In the first step, free-field response of the 
foundation is calculated. These forces are applied to a single layer of elements in the second step to perform the full 
analysis.
An unbounded foundation with superstructure can be shown as Fig. 1.
In DRM, source of excitation is inside the model and therefore a simple 
boundary condition on the sides of the foundation could effectively 
absorb the scattering waves emanating toward these boundaries. Because 
of simplicity and easy implementation, Lysmer’s boundary condition is 
employed in this paper as the absorbing boundary
The problem at hand is represented as Figure 4. Г+ is the foundation 
boundary and Г is a desired virtual boundary that effective seismic forces 
are applied on. Introducing these boundaries results in two domains 
namely, Ω and Ω+ and 3 sets of nodal displacement by the names of ue, 
ub and ui. Subscripts e, b and i refer to external, boundary and internal 
displacements.  
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In Which M, C and K are mass, damping and stiffness matrices respectively. 
By adding Eq. 1 and Eq. 2, the equation for the whole domain is obtained. To calculate effec-

tive seismic forces on Г, an auxiliary problem is solved in which the interior domain (Ω) is re-
placed with Ω0 which has the same properties as Ω+ (Fig. 3-a). 
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In Which M, C and K are mass, damping and stiffness matrices respectively.
By adding Eq. 1 and Eq. 2, the equation for the whole domain is obtained. To calculate effective seismic forces on Г, an 
auxiliary problem is solved in which the interior domain (Ω) is replaced with Ω0 which has the same properties as Ω+ 
(Fig. 3-a).

As it can be observed from Eq. 7, subscript indices are either be or eb which causes the matrices to have zero values 
except on one single layer of elements bounded by b and e nodes. 
To summarize, for the first step the auxiliary problem needs to be solved to obtain the effective seismic forces on all 
nodes of elements bounded by Г and Гe boundaries (Fig. 4). 
For the second step, effective forces of first step are applied at their respective nodes. (Fig. 5).
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Where superscript “0” refers to free-field value of the parameter obtained from auxiliary prob-
lem (Fig. 3-b). 
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Substitute Eq. 4 into Eq. 6 and the final form of effective seismic forces which should be ap-
plied in the second step is obtained:  
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2.2	 Joint description
Degradation of lift joint materials is quantified using the model of Raous et al. (1999). According to the model, yield 
surface for interface material is defined by:

where r_α^t is the tangential force, Ct
αβ is the initial stiffness matrix, ut

β is the relative tangential displacement, μ is the 
friction coefficient, r^n is the normal force of interface, Cn is the normal stiffness of interface, un is the opening, and ω is 
the integrity of grouting material, which can be defined as:

In the above equation, ζ is the viscosity parameter and U is the limit of decohesion. For further detail on the subject refer 
to Daneshyar and Ghaemian (2019).

3.	FI NITE ELEMENT ANALYSIS OF THE SYSTEM OF DAM-FOUNDATION-
RESERVOIR

3.1	E arthquake record and dam description
As the case study, an existing RCC dam in Iran is selected which is schematically shown in Fig. 6. 

Figure 6 : Schematics of RCC dam

For dynamic analysis of the system, first ten seconds of Koyna earthquake record is utilized. The acceleration time 
history of Koyna earthquake is shown in Fig. 7. 
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Figure 6. Schematics of RCC dam 
 
For dynamic analysis of the system, first ten seconds of Koyna earthquake record is utilized. 

The acceleration time history of Koyna earthquake is shown in Fig. 7.  
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3.2 Finite element model of the system 
For numerical analysis, a finite element model of the RCC dam-reservoir-massed foundation 

is developed which is shown in Fig. 8. Material properties of the model are shown in Table 1. 4-
node linear elements are employed in meshing the system. Solid elements are used for dam and 
foundation while acoustic elements are utilized for meshing the reservoir. Earthquake input is 
applied as effective forces (according to DRM procedure) on a single layer of elements in the 
foundation. Since DRM nature implies that outgoing waves are of small amplitudes, a simple 
absorbing boundary condition can be used to absorb scattering waves reaching foundation 
boundary. For this aim, Lysmer's dashpots are used. A non-reflective planar absorbing boundary 
condition is also introduced at the far end of reservoir. Dam, reservoir and foundation are tied 
together at their respective shared interfaces. 

For the purpose of this study, two cases are considered. Both cases are based on the general 
numerical model which is shown in Fig. 8. The difference is related to the behavior of the dam. 
For case 1, the dam is assumed to be homogeneous and no RCC lift joint is present in the dam 
body. In Case 2, this assumption is dropped and RCC lift joints are introduced along dam 
height. For relatively lower computational costs, a total of 25 lifts are considered along dam 
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Figure 7 : Koyna earthquake record

3.2	F inite element model of the system
For numerical analysis, a finite element model of the RCC dam-reservoir-massed foundation is developed which is 
shown in Fig. 8. Material properties of the model are shown in Table 1. 4-node linear elements are employed in meshing 
the system. Solid elements are used for dam and foundation while acoustic elements are utilized for meshing the 
reservoir. Earthquake input is applied as effective forces (according to DRM procedure) on a single layer of elements in 
the foundation. Since DRM nature implies that outgoing waves are of small amplitudes, a simple absorbing boundary 
condition can be used to absorb scattering waves reaching foundation boundary. For this aim, Lysmer’s dashpots are 
used. A non-reflective planar absorbing boundary condition is also introduced at the far end of reservoir. Dam, reservoir 
and foundation are tied together at their respective shared interfaces.
For the purpose of this study, two cases are considered. Both cases are based on the general numerical model which is 
shown in Fig. 8. The difference is related to the behavior of the dam. For case 1, the dam is assumed to be homogeneous 
and no RCC lift joint is present in the dam body. In Case 2, this assumption is dropped and RCC lift joints are introduced 
along dam height. For relatively lower computational costs, a total of 25 lifts are considered along dam height. Between 
each two lift, a non-perfect bond (as explained earlier) is introduced to model the heterogeneous behavior of the dam.

Figure 8 : Finite element model of RCC dam-reservoir-foundation

Table 1 : Material properties

Region Elastic modulus (MPa) Density (Kg/m3) Poison’s Ratio Bulk modulus (MPa)
Dam 3.00 2630 0.20 -

Foundation 2.24 2643 0.33 -
Reservoir - - - 2.07

4.	RESULTS  AND DISCUSSION
Results of case 1 and 2 are presented as follows.
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Figure 9. Tensile (left) and compressive (right) Contours of principal stress for Case 1. 
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As Figs. 9 & 10 show, introducing lift joints in the model changes the contours for maximum principal tensile stress, 
while compressive stress almost remains unaffected. It is concluded from the figures that tensile stresses of jointed 
model are dropped significantly, and tensile stress of upstream face of the dam is almost zero. Close agreement between 
relative crest displacements of two cases is obtained (see Fig. 11).
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Figure 10. Tensile (left) and compressive (right) Contours of principal stress for Case 2. 
 

 
 

Figure 11. Relative displacement of crest with respect to heel for both cases. 
 
 
As Figs. 9 & 10 show, introducing lift joints in the model changes the contours for maximum 

principal tensile stress, while compressive stress almost remains unaffected. It is concluded 
from the figures that tensile stresses of jointed model are dropped significantly, and tensile 
stress of upstream face of the dam is almost zero. Close agreement between relative crest dis-
placements of two cases is obtained (see Fig. 11). 

 

5 CONCLUSION 
 

Homogeneous material assumption for concrete gravity dam body is common in dam engi-
neering practice. Although it might be a good assumption for conventional dams, for dams built 
by the method of RCC placement, this loses its viability. In this paper, the effects of considering 
lift joints in the body of an existing RCC dam was investigated. For this goal, a numerical mod-
el was solved under two separate cases. Case 1 considered homogeneous concrete for dam body 
without any lift joints present and case 2 included a total of 25 lift joints along dam height. A 
non-perfect bond between lifts was introduced in this case. For both cases the concrete remains 
linear so that the effects of lift joints consideration are more clear. 

As results show, when lift joints are present, the pattern of stress development in the dam 
body changes. This change is not limited to the stress pattern in the dam body. In fact, consider-
ing lift joints in the dam body, sensibly changes the peak values of stress in the dam body as 
well. These results show that homogeneous assumption for dam body doesn't always work in 
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5.	CO NCLUSION
Homogeneous material assumption for concrete gravity dam body is common in dam engineering practice. Although 
it might be a good assumption for conventional dams, for dams built by the method of RCC placement, this loses its 
viability. In this paper, the effects of considering lift joints in the body of an existing RCC dam was investigated. For this 
goal, a numerical model was solved under two separate cases. Case 1 considered homogeneous concrete for dam body 
without any lift joints present and case 2 included a total of 25 lift joints along dam height. A non-perfect bond between 
lifts was introduced in this case. For both cases the concrete remains linear so that the effects of lift joints consideration 
are more clear.
As results show, when lift joints are present, the pattern of stress development in the dam body changes. This change 
is not limited to the stress pattern in the dam body. In fact, considering lift joints in the dam body, sensibly changes the 
peak values of stress in the dam body as well. These results show that homogeneous assumption for dam body doesn’t 
always work in favor and a more realistic modelling of the dam body could help get better sense of dam behavior and 
responses.  
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