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ABStrACt
Simulating shallow water flows in large scale river-lake systems is important but challenging because huge 
computer resources and time are needed. Among many numerical schemes, the newly developed lattice 
Boltzmann (LB) method is attractive, because of its easy implementation, intrinsic parallelism, and high 
accuracy. This paper aims to propose a simple and efficient 1D-2D coupled LB model for simulating these flows, 
with the main focus on the coupling strategy of the 1D-2D interfaces. The coupling strategy is implemented at 
the mesoscopic level, in which the unknown distribution functions in the LB equation are calculated from the 
known distribution functions and the primitive variables at the adjacent lattice nodes. To verify the numerical 
accuracy and stability, two typical cases, namely, the dam break flow and the surge waves in the tailrace canal 
of a hydropower station, are simulated by the 1D-2D coupled LB model. The results agree well with both 
analytical solutions and commercial software results. To further demonstrate its capability, the model is used 
to simulate the surge wave propagation and reflection phenomena in the reservoir of a run-of-river hydropower 
station. The flow characteristics are illustrated, and the high efficiency is proved. It is evident that the 1D-2D 
coupled LB model is accurate and reliable in simulating practical large-scale river-lake systems.
Keywords: shallow water flows; 1D-2D coupled model; lattice Boltzmann method; large-scale simulation; 
river-lake systems.

introDuCtion
One-dimensional (1D) and two-dimensional (2D) shallow water equations are widely used to simulate flows in rivers, 
lakes, reservoirs, and estuaries. The dimensionally different models are suitable for different scenarios. The cross-sectional 
integrated 1D models are extremely suitable for hydrodynamic simulations in large scale river networks, with their lumped 
boundary representations for hydraulic structures such as weirs, dams, culverts, and pumps. On the other hand, 2D models, 
with their ability to accurately resolve flows in both longitudinal and transversal directions, are the primary choice for 
hydrodynamic simulations for lakes, reservoirs, and estuaries. Because 1D river networks and 2D lakes are often linked 
together, it is natural to choose the 1D-2D coupled model for accurately investigating their interactions.
Currently, the numerical solvers for the shallow water equations are mainly based on traditional methods, such as 
implicit finite-difference scheme for the 1D model, and finite-volume method for the 2D model [1–3]. Even if being 
accepted widely, these traditional methods are relatively difficult to implement, and the calculations are usually time-
consuming. Recently, the lattice Boltzmann (LB) method is developed for simulating complicated fluid flow problems, 
such as multi-dimensional hydrodynamic flows, multiphase flows, and multi-component flows. Its easy implementation, 
intrinsic parallelism, and high accuracy have been demonstrated by many works [4–7]. Because of these advantages, 
introducing LB method into simulations of the shallow water flows seems to be very attractive. Cheng [8,9] first 
introduced the 1D LB model for the 1D shallow water equations, and Frandsen [10] had further verified the model. 
Later, Thang [11] used it to simulate flows in complex irrigation channels, and Chopard [12] used it to simulate flows in 
rapids canals. On the other hand, Zhou [13] first developed a 2D LB model for the shallow water equations, in which the 
terrain and riverbed friction are represented by source terms in the original LB equation. Cheng and Zhang [14,15] used 
a similar 2D LB model to simulate the surge propagations caused by the transient processes of hydropower stations. Liu 
[16–19] adopted the 2D models to simulate flows in open channels and shallow lakes. 
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This paper aims to propose a 1D-2D coupled LB model for simulating shallow flows in 
river-lake systems. Thus, it is necessary to discuss the 1D-2D coupling strategies. According 
to the specific problems, the strategies are mainly divided into three categories: the lateral 
coupling, the superposition coupling, and the boundary connected coupling [20]. The first 
category is mainly adopted to simulate flows in floodplain systems [2,21]. The second 
category is mainly used to simulate flows in systems with obvious 2D flow effects of local 
flow patterns, in which the high-dimensional model is superimposed on the low-dimensional 
global model [22,23]. The third category is mainly applied to rivers, lakes, reservoirs, and 
estuarine systems, which connect different dimensional models directly through the coupling 
boundaries. There are a variety of coupling strategies available for the third category. The 
simplest one is to run each submodel in sequence, with its boundary conditions provided by 
the previous solution of each other [24–26]. However, the mutually provided boundary 
conditions are lagged, causing the non-conservation of mass or momentum. To reduce the 
errors, overlapped areas are set at the coupling boundaries [27–29], but it still cannot avoid 
the errors caused by the lagged boundary conditions. Another strategy is to use iterative 
methods to solve the coupling boundaries, which can fully meet the conservation of mass and 
momentum [20]. However, each iteration must go through an overall calculation, and one 
time step may need several iterations, resulting in a great calculation amount and a low 
computational efficiency.  

The coupling strategies listed above are tailored for traditional numerical methods. 
However, the works addressing the coupling procedure of interconnected subdomains for the 
LB based shallow water simulations are rare. We found only one similar work tried to couple 
2D LB shallow water model with 2D LB free-surface model [29], but the coupling strategy 
was still implemented at the macroscopic level, and the numerical stability was affected by 
both relaxation time and the size of the overlapping region.  

Here, we present a rather simple and efficient 1D-2D coupled LB model, with a coupling 
strategy at the mesoscopic level. The coupling interface is regarded as an interior node with 
only three unknown distribution functions to be solved, and the numerical stability is only 
affected by the relaxation time. Moreover, the proposed model retains all the merits of the LB 
method [30,31], especially its intrinsic parallelism and easy programming, making it quite 
suitable for hydrodynamic simulations in large scale river-lake systems. 

The paper is organized as follows. The 1D-2D coupled LB model is described in Section 2. 
Two typical cases are simulated to verify the proposed model in Section 3. An application to 
simulating the surge wave propagation and reflection processes in a practical run-of-river 
hydropower station is presented in Section 4. Finally, a brief conclusion is made to end the 
article. 

1D and 2D lattice Boltzmann models and their coupling strategy 

1D LB model  

The common LB equation [9] with Bhatnagar-Gross-Krook (BGK) collision operator can 
be written as 

( 0,1, 2)
1( , ) ( , ) ( , ) ( , ) ,eqt t t f t t f t Ff f      


          x e x x x            (1) 
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where the left side terms of Eq. (1) denote the propagation process, and the right side terms of 
Eq.(1) denote the collision process; x is the lattice node coordinate; e is the discrete particle 

velocity; ( , )tf x is the discrete distribution function along the th  particle velocity 

direction, and ( , )eqf t x  is its corresponding equilibrium;   is the relaxation time; F  is 
the external forcing term.  

Here, the D1Q3 model is adopted, in which the three discrete particle velocities are 
   2 0 1, , 1,0,1e e e c   , with the lattice speed /c x t   . The equilibrium distribution 
functions can be expressed as  

2 2

0 2 22
eq gh huh

c c
f    ,

2 2

1 2 24 2 2
eq gh hu huf

c c c
   ,

2 2

2 2 24 2 2
eq gh hu huf

c c c
                 (2) 

Water depth and velocity of the fluid are calculated by the moments of mesoscopic variable 
( , )tf x  

,h f h f  
 

  u e                                                 (3) 

The second-order treatment of external forcing term proposed by Cheng [9] is adopted, and 
F  can be written as  

1 ( )
2 f

gh z
S

x
F 

 


, 0 0F  , 2 ( )
2 f
gh zF S

x


 


                             (4) 

where h is the water depth, u is the velocity, g is the gravitational acceleration, z is the water 
surface elevation, Sf  is the frictional loss. 

The simulation results of the LB model should be approximate to the solution to the 1D 
Saint Venant equations. The LB model can recover the corresponding macroscopic 1D 
shallow water Eqs. (5) and (6) by the Chapman-Enskog expansion [9]. 

( ) 0h hu
t x

 
 

 
                                                      (5) 

2
2( ) ( ) ( )

2
  

   
   f
hu gh zhu gh S
t x x

                                     (6) 

As for boundary treatment, the unknown distribution functions at inlet and outlet boundary 
can be defined as  

Inlet boundary: 2 0
1 0 2 1

(1 )or
1

u f ufh f f f
u

f  
   


,                         (7) 

Outlet boundary: 1 0
2 0 1 2

(1 ),or
1
u f uff h f f f

u
 

   


                       (8) 

 2D LB model 

The 2D LB equation [32] can be written as 
( , ) ( , )f t t t f t F         x e x                                (9) 

where   is the collision operator, the definition of other variables are the same as Eq. (1). 
The D2Q9 model are applied, and the discrete particle velocities are 
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0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1

c

   
     

e                             (10) 

The equilibrium distribution functions are expressed as  
2

2
2 2

2 2
2 2

5 2 0
6 3

3 9 3( 3 ( ) ), 1,2, ,8
2 2 2

eq

eq

gh hf h
c c

hf w gh
c c



   






  


         


,u =

e u e u u
             (11) 

where the weight factor  4 9,1 9,1 9,1 9,1 9,1 36,1 36,1 36,1 36w  .  
The multi-relaxation time (MRT) collision operator is adopted [32]. Compared with the 

single-relaxation-time (SRT) LB, the MRT-LB incorporates more fluid physical information 
and is more stable and accurate. Water depth and velocity of the fluid can be calculated by Eq.    
(3). 

In this study, we follow Cheng [33] in treating the external forcing term F . Assuming the 
A is the source term in the continuity Eq. (14) and B is the external forcing term in the 
momentum Eq. (15), the F  can be written as 

 1 ( , ) ( , )
2

F t t t q tt q         x e x                                 (12) 

  3 ( ) 3( )q w A         B e u e u e                                  (13) 

in which 0A  , B S . 
With the above setups, this 2D LB model can recover 2D shallow water Eqs. (14) and (15) 

by the Chapman-Enskog expansion in the incompressible flow limit [34]. 
( )

0j

j

huh
t x


 

 
                                                    (14)              

 
2

2( ) ( )( )
2

i j ji

j i j j

hu u huhu g h v
t x x x x

              
S                          (15) 

where ui  and uj is the depth-averaged velocities; b f S S S , with =S gb bhP  is the 

hydraulic gradient caused by the bed gradient, with bP  is the component of bed gradient; 
2 3= /S gf j jun u u h  is the hydraulic gradient caused by bed shear stresses, with n is the 

coefficient of Manning.  

The Coupling strategy of 1D-2D coupled LB model 

The coupling interface is in the form of a node in the 1D computational domain, and in the 
form of a line in the 2D computational domain. In the present study, it is treated as an interior 
node at the 1D domain, with three unknown distribution functions to be calculated. These 
unknown distribution functions at the coupling interface are calculated by the distribution 
functions from the adjacent 1D and 2D nodes. The reformulation of the unknown distribution 
function is depicted in fig. 1, in which g  denote distribution functions of the 1D domain, 
f  denote distribution functions of the 2D domain, k refers to the position of the coupling 



4 5

Symposium on Sustainable Development of Dams and River Basins, 24th - 27th February, 2021, New Delhi

4 
 

node at the 1D domain; j refers to time, and m denotes the position of the coupling node at the 
2D domain. 

The processing steps for dealing coupling interface can be expressed as follows: 
(1) Calculate the three unknown distribution functions at the coupling interface; 
(2) Calculate the water depth and velocity of the coupling interface by the distribution 

functions that solved in the first step; 
(3) Calculate the unknown distribution functions of the 2D domain at the interface by 

macroscopic parameters. 

   
fig. 1. Sketch of the 1D-2D LB coupling boundary. 

To be specific, as shown in fig. 1, the unknown distribution functions 0 ( , )g k j , 1( , )g k j , 

2 ( , )g k j  at the coupling boundary are calculated at first.  

1( , )k jg  can be expressed as 

1 1 1 1 1

1
( , ) ( 1, 1) ( ( 1, 1) ( 1, 1))eqk j g k j g k j g k j Fg


                          (16) 

2 ( , )k jg  can be calculated by the distribution functions at the adjacent 2D nodes and 
expressed as 

2 2 2 2 2

1
( , ) ( 1, 1) ( ( 1, 1) ( 1, 1))eqg k j g m j g m j g m j F


                        (17) 

Where 2 2 6 8( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)g m j f m j f m j f m j           , with 2( 1, 1)f m j  ,  

6 ( 1, 1)f m j  ,  and 8 ( 1, 1)f m j   are the averaged values of distribution functions at 
position m+1.  

0 ( , )g k j  can be calculated by 

0 0 0 0 0

1
( , ) ( , 1) ( ( , 1) ( , 1))eqg k j g k j g k j g k j F


                            (18) 

Then, the water depth and velocity can be obtained by 

1 2 0( , ) ( , ) ( , ) ( , )h k j g k j g k j g k j                                       (19) 

1 2( , ) ( ( , ) ( , )) ( , )u k j g k j g k j h k j                                      (20) 
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Finally, given ( , )in k jh h , ( , )x k ju u , 0yu  , assuming that 1 1 2 2
eq eqf f f f   . The 

unknown distribution functions 1f , 5f , and 7f  at the inlet boundary of the 2D domain is 
solved by Eq. (21).  

1 2

5 6 3 4

7 8 3 4

2 /
3
1 1 1( ) / /
2 2 6
1 1 1( ) / /
2 2 6

in x

in y in x

in y in x

f f h u c

f f f f h u c h u c

f f f f h u c h u c

  

     

     

                            (21) 

Similarly, the unknown distribution functions 2f , 6f , and 8f  at the outlet boundary of 
the 2D domain can be solved by Eq. (22). Other boundaries of the 2D domain are regarded as 
no-slip solid walls and treated by non-equilibrium rebound scheme [35]. 

2 1

6 5 3 4

8 7 3 4

2 /
3
1 1 1( ) / /
2 2 6
1 1 1( ) / /
2 2 6

out x

out y out x

out y out x

f f h u c

f f f f h u c h u c

f f f f h u c h u c

  

     

     

                           (22) 

The above coupling strategy is aimed at conditions that the 1D model is adopted at 
upstream and the 2D model is adopted at downstream. The processing steps for conditions 
that the 2D model is adopted at upstream and the 1D model is adopted at downstream are 
solved in the same way. In this case, the coupling interface is at the outlet boundary, which is 
regarded as an interior node at the 1D domain. The three steps mentioned above is used to 
solve the unknown distribution functions of the coupling interface. Eqs. (21) and (22) are used 
to calculate the unknown distribution functions at the inlet boundary and the outlet boundary 
for the 2D domain, respectively.  

Accuracy and stability verification 

To verify the accuracy and stability of the 1D-2D coupled LB model, the dam break flow 
and the surge wave flow in the tailrace canal of a hydropower station are simulated.  
The dam break flow 

The dam break flow in a frictionless and flat rectangular channel is simulated. As shown in 
fig. 2, the dam is placed across the channel at the middle plane of the domain, and the initial 
water depths at the upstream and downstream sides are set to 8 m and 2 m, respectively. The 
initial velocity is zero. When the dam collapses completely in a sudden, two bores 
propagating in the upstream and downstream directions, respectively, are generated. In the 
simulation setup, the channel is divided into three domains, with the middle domain simulated 
by the 2D LB model, and the two outer domains simulated by the 1D LB model (fig. 2). The 
upstream and downstream boundaries are set as constant water depths. x1 and x2 denote the 
coupling interfaces, and the side boundaries of the 2D domain are treated as no-slip walls. 
Like any other explicit numerical methods, the 1D-2D coupled LB model must satisfy the 
stability requirements:  
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1.0
u

Cn
c

  , 1.0
u

Fr
gh

  , 1.0
ghCn

Fr c
                          (23) 

in which Cn is Courant number, and Fr is Froude number. 
The accuracy of the 1D-2D coupled LB model is analyzed by comparing the results of 1D 

LB, 2D LB, 1D-2D LB, and analytic solution [36]. The lattice length is set to 0.2 m and time 
step is 0.01 s, and the relaxation time for the 1D model is 0.8, the 2D model is 1.0, and the 
1D-2D model, with tau1_up=0.8 is set for the upstream 1D model, tau1_down=0.85 for the 
downstream 1D model, and tau2=1.4 for the 2D model. Note these relaxation time parameters 
set for the 1D-2D LB model are optimized and regarded as the default values in the rest of 
this paper unless otherwise specified. 

 
fig. 2. Computational domain of the dam break case. 

Accuracy analysis 

fig. 3 compares the profiles of water depth and velocity of the present method with those 
obtained by 1D LB, 2D LB, and analytic solutions. The wave front passes through the 
interface, but the shape doesn’t change in all cases. The numerical results of the three 
numerical models almost coincide with each other and agree well with the analytic solutions. 
Besides, the errors of the proposed model are slightly larger than those of 1D and 2D models, 
but still within a very small range. The difference values of maximum relative error between 
the proposed model and 1D and 2D models are within 3.5%. 

0 20 40 60 80 100

2

4

6

8

0

1

2

3

4

5

U
(m

/s
)

H
(m

)

x(m)

 Analytic
 1D LB
 2D LB
 1D-2D LB

x2

 

h

u

x1 (a)

 
0 1 2 3 4 5

6.4

6.8

7.2

7.6

8.0

0.0

0.5

1.0

1.5

2.0
U

(m
/s

)

H
(m

)

t(s)

 Analytic
 1D LB
 2D LB
 1D-2D LB

h

u

(b)

 

 

 
fig. 3. Simulated results of different models and comparison with the analytic solution: (a) water depth and 
velocity profiles at t=4.0 s; (b) water depth and velocity histories at coupling interface x1. 
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table 1 : Errors at coupling interfaces x1 and x2 of the three models at t=4.0 s (absolute error (AE), relative 
error (RE)). 

Methods 
x1 x2 

h (m) AE (m) RE (%) h (m) AE (m) RE (%) 
Analytic 7.203 - - 4.414 - - 
1D LB 7.179 0.024 0.34 4.411 0.003 0.06 
2D LB 7.168 0.035 0.49 4.411 0.003 0.06 

1D-2D LB 7.155 0.048 0.67 4.408 0.006 0.13 
Methods u (m/s) AE (m/s) RE (%) u (m/s) AE (m/s) RE (%) 
Analytic 0.906 - - 4.557 - - 
1D LB 0.939 0.034 3.70 4.552 0.005 0.10 
2D LB 0.952 0.047 5.14 4.552 0.005 0.10 

1D-2D LB 0.970 0.064 7.05 4.549 0.008 0.17 

shows the errors of three numerical models at x1 and x2, respectively. The errors of the 
1D-2D coupled LB model are quite small. The absolute errors for water depth are within 
0.05m, and the relative errors are within 1%. The errors for velocity is a little larger, with a 
maximum absolute error of 0.064 m/s, which is acceptable in practical engineering. Besides, 
the errors of the proposed model are slightly larger than those of 1D and 2D models, but still 
within a very small range. The difference values of maximum relative error between the 
proposed model and 1D and 2D models are within 3.5%. 

Convergence analysis  

To study grid convergence of the present model, we keep the normalized parameters 
unchanged and refine the mesh. As shown in fig. 4, the results approach analytic solution as 
the mesh becomes finer. But as the mesh becomes very fine, such as mesh sizes 0.1 m and 0.2 
m, the differences between their results are very small. As shown in table 2, the relative 
errors of water depth at the coupling interfaces for mesh sizes 0.1 m and 0.2 m are both within 
1%, and the relative errors of velocity are within 5%. But the relative errors of mesh size 0.4 
m are much larger, with a maximum value of 13%. Therefore, to get an accurate solution at 
the coupling interfaces (HRE <5% and VRE <5%), the mesh size should not be larger than 0.2 m. 
Thus, a mesh size of 0.2 m is adopted in the rest of the paper.  

0 20 40 60 80 100

2

4

6

8

0

1

2

3

4

5

 Analytic
      = 0.1 m
      = 0.2 m
      = 0.4 mx
x
x

U
(m

/s)

H
(m

)

x(m)

x

 

h

u

 
fig. 4. Water depth and velocity profiles at t=4.0 s under different mesh sizes. 
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table 2 : Errors at coupling interfaces under different mesh sizes (t=4.0 s). 
Interface x1 hx1 (m) AE (m) RE (%) ux1(m/s) AE (m) RE (%) 

Analytic 7.203 - - 0.906 - - 
x =0.1 m 7.178 0.024 0.34 0.938 0.032 3.58 
x =0.2 m 7.155 0.048 0.67 0.950 0.044 4.86 
x =0.4 m 7.114 0.088 1.23 1.023 0.117 12.94 

Interface x2 hx2 (m) AE (m) RE (%) ux2 (m/s) AE (m) RE (%) 

Analytic 4.414 - - 4.557 - - 
x =0.1 m 4.412 0.002 0.05 4.552 0.005 0.11 
x =0.2 m 4.408 0.006 0.13 4.549 0.008 0.17 
x =0.4 m 4.395 0.019 0.44 4.535 0.022 0.49 

To access the spatial convergence order, the global relative errors L1 and L2 are defined as 

0
1

N

i aL u u N  , 2

0
2 ( )

N

i aL u u N                              (24) 

where ui is the simulated water velocity, ua is the analytic solution, and N is the number of 
nodes.  

Three mesh sizes, 0.1 m, 0.2 m, and 0.4 m, are selected, with each one doubled from the 
former. The convergence order of the 1D-2D coupled LB model is shown in fig. 5. The 
convergence order of L1 and L2 are both around 1. The first-order convergence feature should 
be improved in later study because the standard order of LB models is second-order.  
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fig. 5. Convergence order of the 1D-2D coupled LB model.  

Numerical stability analysis 

In this section, the numerical stability of the 1D-2D coupled LB model is analyzed. As 
indicated by a previous study [29], the relaxation time has a great influence on numerical 
stability. Therefore, we mainly analyze the effects of relaxation time parameters, tau1_up, 
tau1_down, and tau2. We set tau1_up to 0.5, 1.0, and 2.0, tau2 to 0.95, 1.1, 1.25, 1.4, and 1.55, 
and tau1_down to 0.7, 0.8, 0.85, 0.9, and 1.0. For all cases, the lattice length is 0.2 m and the 
time step is 0.01 s. Note that when the influence of one relaxation time is analyzed, the other 
two relaxation time parameters are fixed to the default values mentioned above. 
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As shown in fig. 6, the results at interface x1 are smooth and stable when tau1_up is 
ranging from 0.5 to 2.0, and the results are more accurate as the value of tau1_up closer to 0.5. 
This indicates that tau1_up has no obvious influence on numerical stability for negative 
waves. 
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fig. 6. The partial enlarged water depth and velocity profiles at t=4.0 s for different tau1_up. 

fig. 7 illustrates the influence of tau2 and tau1_down on numerical stability. The results 
show that both tau2 and tau1_down have an optimal relaxation time, which leading the 
smoothest connection at the coupling interface x2. And the larger the relaxation time deviates 
from the optimal value, the larger the error at the connection. Therefore, the values of tau2 
and tau1_down have a great influence on the numerical stability for advancing positive 
waves. 
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fig. 7. Water depth and velocity profiles at t=4.0 s under different relaxation time tau2 and tau1_down: (a) the 
partial enlarged drawing for different tau2; (b) the partial enlarged drawing for different tau1_down. 

The influence on the numerical stability of tau1_up is opposite with those of tau2 and 
tau1_down. The reasons can be illustrated as follows: the negative wave makes the water 
depth and velocity changed gradually at coupling interface x1, while the progressive wave 
causes the water depth and velocity changed dramatically at coupling interface x2. Therefore, 
the selection of the coupling interfaces should avoid the places where water depth and 
velocity change fast. If it cannot be avoided, the relaxation time should be reasonably selected 
to make the results as smooth as possible.  
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The surge waves in tailrace canal of a hydropower station  

The surge waves in the tailrace canal of a hydropower station caused by load rejection is 
simulated by the 1D-2D coupled LB model. The tailrace canal has a constant rectangular 
cross-section with a length of 100 m, a width of 10 m, a flat bottom, and a roughness 
coefficient of 0.015. The upstream boundary is the given discharge, which decreases linearly 
from 600 m3/s to 0.0 m3/s within 8.0 s. The downstream boundary is a constant water depth of 
15 m. As depicted in fig. 8, the 2D model and 1D model is used to simulate the upstream half 
part and downstream half part of the domain, respectively, with the interface at x=50 m. The 
lattice length is 0.2 m, the time step is 0.01 s, and the relaxation time tau1=0.6 and tau2= 
0.875. 

                
fig. 8. Computational domain for the surge waves in the tailrace canal of a hydropower station. 

The discharge and water depth histories at downstream, upstream, and interface x of the 
1D-2D coupled LB model and Delft3D are compared in fig. 9. The results agree well with 
each other, and the proposed method has a better ability to capture the steep inflection point of 
surge, indicating a smaller numerical diffusivity. 
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fig. 9. Surge wave histories in the tailrace canal for load rejection: (a) water depth at the upstream end and 
discharge at the downstream end; (b) water depth and discharge histories at the coupling interface(x=50 m). 

From the above analysis, the 1D-2D coupled LB model proven to be accurate and 
reliable. The choice of coupling interfaces should avoid the regions where shock waves or 
abrupt changes of flow field may occur. Otherwise, the LB relaxation time should be carefully 
tuned. 

Simulation of surge waves in the reservoir of a run-of-river hydropower station  

Computational setup 

The surge wave propagation and reflection phenomena caused by a load rejection in a 
run-of-river hydropower station are simulated to further demonstrate the capability of the 
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present method. The hydropower station, the reservoir, and the computational domain are 
depicted in fig. 10. The reservoir is divided into three parts (Channel 1 (C1), Channel 2 (C2) 
and channel 3 (C3)) by two dikes (Dike 1 (D1) and Dike 2 (D2)). There are two powerhouses 
(Powerhouse 1 (PH1) and Powerhouse 2 (PH2)) located at the end of Channel 2. Powerhouse 
1 includes 14 turbines, with a total discharge of 11550 m3/s, and Powerhouse 2 includes 7 
turbines, with a total discharge of 6385 m3/s. Channel 1 and Channel 3 are used for sand 
washing and shipping. There are two side branches: Branch 1 is 7.7 km, and Branch 2 is 2.2 
km. Several monitoring points are set to record the flow parameters. Point A is located at the 
inlet of Powerhouse 1, Point B is located at the inlet of Powerhouse 2, Point C is located at 
the head of Dike 1, Point D is located at the head of Dike 2, Point E is located at estuary of 
Branch 1, Point F is located at estuary of Branch 2, and Point G is located at the coupling 
interface. 

The simulation scope of this example is about 40 km, in which the 2D part of the 
reservoir (about 5 km starting from the dam to Point G) is treated by the 2D LB model, and 
the upstream 35 km river is handled by the 1D LB model. The upstream boundary of the 1D 
domain is set to constant discharge because there is a high dam located. The downstream 
boundary of the 2D domain is the dam, at which the discharge values of each powerhouse are 
given. Other boundaries are set to no-slip walls. The roughness of the river bed is 0.025. The 
time steps of 1D LB and 2D LB models are both set to 0.0864 s, and the corresponding 
uniform lattice length is 4.32 m. The mesh nodes are 8102 for the 1D domain and 16001200 
for the 2D domain. 

 
fig. 10. Schematic of the reservoir region of the computational domain. 

Simulation results 

Steady flow simulation is conducted at the early stage of the simulation to use as the 
initial condition for the transient flow simulation. The transient process simulation is caused 
by the load rejection of all units in two powerhouses simultaneously, in which their discharge 
decrease linearly to zero within 40.0 s. The water depth and velocity at six typical moments 
are shown in fig. 11.  

After the load rejection, a pair of surge waves are generated from two powerhouses and 
propagated upstream (t=0.5 min). Then, the surge wave propagates back and forth between 
Dike 1 and Dike 2, causing the water depths near two dikes to fluctuate alternately. This 



12 13

Symposium on Sustainable Development of Dams and River Basins, 24th - 27th February, 2021, New Delhi

12 
 

phenomenon is particularly obvious in the preliminary stages of this simulation (t=1.5 min 
and t=2.0 min). At about t=2.0 min, the surge wave reach the estuary of Branch 1 and Branch 
2 for the first time. Meanwhile, it also reaches the front of Channel 1, which causes an 
obvious increase in water depth (t=3.0 min). The surge wave keeps propagating, at about 
t=3.5 min, it reaches the coupling interface. At about t=7.0 min, it arrives at the end of Branch 
1. 
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fig. 11. Surge wave propagation and reflection in the reservoir after load rejection: water depth (left column) and 
velocity (right column). 
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fig. 12. Histories of the water depths for some monitoring points. 

To analyze the water level fluctuations at each important building of the hydraulic project, 
fig. 12 shows the histories of water depth at the monitoring points. Many information can be 
extracted, such as the first moment affected by the surge waves, the maximum and the 
minimum water depths, and the attenuation duration of the surge waves. Take point A for 
example, the maximum and the minimum water depths are 68.77 m and 67.49 m, which occur 
around 0.85 and 2.0 hours, respectively. The time for the surge wave attenuating completely 
takes about 5.0 hours. 
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fig. 13. Comparison of water depth at the inlets of Powerhouse 1 and Powerhouse 2. 
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fig. 11. Surge wave propagation and reflection in the reservoir after load rejection: water depth (left column) and 
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To analyze the water level fluctuations at each important building of the hydraulic project, 
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minimum water depths, and the attenuation duration of the surge waves. Take point A for 
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14 
 

To study the propagation and reflection rules of the surge waves, we enlarge the histories 
of water depth at the inlet of the two powerhouses. As shown in fig. 13, the surge waves are 
composed of low frequency fundamental wave and high frequency wave. The former is due to 
the propagation and reflection of surge waves between the two powerhouses and upstream 
boundaries, and the latter is because of the wave propagation and reflection between dikes and 
banks. The riverbed resistance attenuates these waves gradually during the propagation 
processes. The high frequency wave disappears after 2.0 hours, and the low frequency 
fundamental wave dies out after 5.0 hours. 

Computational efficiency analysis 

The graphic processing unit (GPU) equipped with super-long pipeline and massive thread 
parallelism has shown powerful capability in non-graphical computations. The LB method 
has explicit and local features, which match the multi-thread parallel characteristics of GPU 
quite well. Thus, the 1D-2D coupled LB model can fully take advantage of the GPU to solve 
the computation-intensive problem.  

To verify parallel computational efficiency, the 1D-2D coupled LB model is implemented 
on a GPU platform. The thread block is organized as a 1D array in both 1D and 2D 
computational domain, and the grid of 2D domain is organized as a 2D array that matches the 
plane expanded by two dimensions. Shared memory is used in the 2D computational domain 
because threads can concurrently access the shared memory at no cost as long as there are no 
bank conflicts.  

table 3 : Performance (in MNUPS) of the 1D-2D coupled LB model under different mesh sizes. 

Lattice length (m) 2D Grid 1D Grid Consumed time (h) Performance Speedup ratio 
x =17.28 400 300 2026 0.71 17.09 - 
x =8.64 800 600 4051 1.90 25.54 2.7 
x =4.32 1600 1200 8102 4.47 43.12 6.3 
x =2.16 3200 2400 16204 15.42 49.92 21.7 

Four different mesh sizes 2.16 m, 4.32 m, 8.64 m, and 17.28 m, are simulated. The results 
are shown in table 3, in which the time is given in hours and the performance is given in 
million nodes updated per second (MNUPS). All computations are carried out using double 
precision floating on an NVIDIA Geforce GTX TITAN X graphics card, which can deliver a 
peak performance of approximately 7×1012 single-precision floating point operations per 
second and a peak memory bandwidth of approximately 336.5 GB/s. 

It can be seen that as the mesh becomes finer, the consumed time increases, but the 
performance and the speedup ratio increase, indicating that the coupled model can achieve 
better performances on finer meshes. Therefore, the 1D-2D coupled LB model has an 
outstanding advantage in the simulation of large-scale river-lake systems. 

Conclusions 

In this work, a novel 1D-2D coupled lattice Boltzmann model is developed for shallow 
water simulations in large scale river-lake systems. Both 1D and 2D models are numerically 
solved by the LB method. The coupling strategy is carried out at the mesoscopic level, in 
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which the coupling interface is treated as an interior node of the 1D domain, and its unknown 
distribution functions are calculated by the macroscopic variables and the distribution 
functions at adjacent 1D and 2D nodes.  

By verifying and applying the proposed model, we found that: (1) the 1D-2D coupled LB 
model has a good accuracy; (2) the numerical stability of the proposed model is greatly 
affected by the LB relaxation time, especially when water depth and velocity at the vicinity of 
the coupling interfaces change drastically. Thus, the placement of coupling interfaces should 
avoid the regions where shock waves or abrupt changes of flow field may occur. Otherwise, 
the LB relaxation time should be carefully tuned; (3) the coupled model can achieve better 
performances on finer meshes, indicating it has an enormous potential to simulate flows in 
large-scale river-lake systems. 

The 1D-2D coupled LB model has a great value for applications because of its simple, high 
accuracy, convenient processing complex boundaries, suitable for parallel computing, and a 
wide application range. Further study for the 1D-2D coupled LB model will focus on its 
applications on simulations of water temperature and quality in large scale river-lake systems.  
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