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Abstract

Traditional inspection procedure for condition assessment of dam structures is laborious, dangerous, time 
consuming, capital intensive and highly dependent on subjective skill level of a human’s judgment. This 
leads to comprehensive project expenditure incurred by the dam owner.. The primary focus of the authors is 
to present an improved defect detection and quantification software paired with a novel Unmanned Aerial 
Vehicle (UAV)-based data collection technology to detect and quantify surface and subsurface defects such as 
delamination, voids, cracking. The data is collected in-terms of Light Detection and Ranging (LiDAR), optical 
images, infrared images, and acoustic signatures which is further combined together to quantify surface and 
subsurface defects in concrete dams. Furthermore, the condition-based life cycle assessment on a time-scale 
allows owners to make cost-efficient business decisions to plan and execute the maintenance repair schedule 
using the risk modelling methods to extend the lifespan of the structure rather than replacing the entire 
structure. This approach also grants building predictive deterioration models using the historical performance 
which can be utilized for asset management. This paper demonstrates a case study of the technology when 
applied on concrete structures in USA and Canada to detect and quantify surface and subsurface damage. 

1. INTRODUCTION
According to the 2019 National Register of Large Dams [1], India has about 5745 large dams (including the under construction) 
and out of which more than 1000 dams will be over 50 years or older by 2025. These statistics from the registry shows 
that there is a substantial need for frequent monitoring of structures to understand the risk profile better. The traditional 
visual inspection and sounding (with a hammer) are still the commonly used techniques to detect and identify surface and 
subsurface defects in concrete structures. This process demands physical access to the structures and occasionally require 
huge investment towards arranging temporary scaffoldings/permanent platforms, ladders, and snooper trucks. To improve the 
traditional inspection procedure, an Unmanned Aerial Vehicle (UAV) assisted structural health assessment can be performed 
and the application of UAVs can allow coverage of large areas in a shorter duration and can also be programmed to inspect a 
wide variety of structures autonomously. The inspection instruments such as Light Detection and Ranging (LiDAR), Optical 
Cameras, Thermal Cameras, and other sensors are mounted on UAVs to transmit information in real-time (or save it on the 
memory cards onboard) thereby facilitating inspection from the ground station. The unique benefit is that digitization of the 
entire monitoring activity has widened the scope for easy storage, sharing, better accessibility to end user and minimizing 
the potential of a human error. Another advantage is that the whole inspection technique is cost-effective [2] as the entire 
structure could be inspected automatically using cost-effective UAV-images and other data. 

In recent years, there has been significant progress in UAV research for structural health monitoring. Majority of the work 
performed is around image processing and defects detection. This work includes but not limited to the use of UAVs collect 
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Fig. 1 : UAV-based Multi-layered Data Collection

In addition to these four primary datasets, it also collects positional information, camera angle, speed of the drone, acquisition 
distance, altitude etc. to correlate the defects not only to global positioning system but also on local x-y co-ordinates. This 
additional information is stored to inspect structures on a periodic basis to detect and quantify a small change in the defects 
over time. The system can be integrated on autonomous flights to avoid manual flight planning during the inspections and 
streamline the periodic inspection program for any civil asset. 

The multi-layered data collected is fed into the software shown in Figure 2. Optical images allow for detection and 
quantification of surface defects such as cracks, spalling. Infrared sensor allows for detection of subsurface delamination, 
moisture ingress, surface vegetation growth etc. for up to 50 mm (requires clear sunshine) from the top concrete surface. 
Acoustic sensor detects and quantifies deeper (up to 200 mm) voids/delamination in concrete sections. In addition, it captures 
the relative reduction in compressive strength of concrete. The software uses a deep learning model to detect and quantify 
defects automatically. The deep learning model is trained to classify images into two classes of images, for example; with 
cracks and without cracks. A powerful deep-learning model based on convolutional neural network (CNN) is being used for 
training. In order to ensure the accuracy, a dedicated quality check person is assigned. 

images and convert them into a 3-dimensional imagery model [3], use of image processing to detect the surface deteriorations 
like cracks, discoloration, efflorescence, leaching, and spalling [4, 5], and crack identification strategy by combining hybrid 
image processing with UAV technology [6]. Some of the recent advancements employ CNN-based models [7], percolation-
based image processing [8], sequential image filtering [9], Canny edge detection [10], top-hat filtering [11], etc. The 
percolation technique proposed by Yamaguchi et al. [12] was focused on reducing the computation time and cost. Nishikawa 
et al. [9] proposed sequential image filtering technique to filter out the noise in a crack image. 

However, there is a significant knowledge gap in-terms of quantifying surface and subsurface defects accurately and tracking 
the changes over the period of time using currently available UAV-based techniques. The team at Niricson has come up with 
a software solution paired with a patent-pending data collection technology to not only detect defects, but also quantify 
those defects. The data collection technology uses various advanced built-in sensors (such as LiDAR, optical, infrared, and 
acoustic sensors) to collect four types of primary dataset as shown in Figure 1.
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Figure 2 Defect Detection and Quantification Software Platform (AUTOSPEX) 64 

The software is not limited to detection and quantification of the defects but it also tracks year over year progress in order to 65 
build a predictive/deterioration model of a concrete asset to provide life cycle assessment on concrete structures. This predictive 66 
model can be used for risk analysis, maintenance or rehabilitation planning.  67 
 68 

2. Data ColleCtion on ConCrete arCh Dam anD sPillway struCtures (a Case stuDy) 69 
To implement the software and the data collection technology, a concrete spillway structure and a concrete arch dam 70 

located in Canada and the United States of America were identified. Matrice M210-RTK- Unmanned Aerial Vehicle (UAV) 71 
was used to collect LiDAR, optical images, thermal images, and acoustic signatures at both the sites. Figure 3 shows the UAV 72 
navigation direction while capturing the data points. RTK base station was setup on the side structure during the entire data 73 
collection process. First 2 sets of flights (Only LiDAR) were conducted to capture the overall geometry (Length, slope etc.) of 74 
the structures. The data was captured at 50 m above ground level (AGL). Second multiple sets of flights were conducted at a 75 
lower altitude (less than 8 m) with the slope and other information of the structures. This information was used to adjust the 76 
angle of the camera (keeping the camera perpendicular to the surface). Infrared images were acquired at a higher altitude (more 77 
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The software is not limited to detection and quantification of the defects but it also tracks year over year progress in order 
to build a predictive/deterioration model of a concrete asset to provide life cycle assessment on concrete structures. This 
predictive 66 model can be used for risk analysis, maintenance or rehabilitation planning. 

2. 	 DATA COLLECTION ON CONCRETE ARCH DAM AND SPILLWAY STRUCTURES (A CASE 
STUDY) 

To implement the software and the data collection technology, a concrete spillway structure and a concrete arch dam located 
in Canada and the United States of America were identified. Matrice M210-RTK- Unmanned Aerial Vehicle (UAV) was 
used to collect LiDAR, optical images, thermal images, and acoustic signatures at both the sites. Figure 3 shows the UAV 
navigation direction while capturing the data points. RTK base station was setup on the side structure during the entire data 
collection process. First 2 sets of flights (Only LiDAR) were conducted to capture the overall geometry (Length, slope etc.) 
of the structures. The data was captured at 50 m above ground level (AGL). Second multiple sets of flights were conducted 
at a lower altitude (less than 8 m) with the slope and other information of the structures. This information was used to adjust 
the angle of the camera (keeping the camera perpendicular to the surface). Infrared images were acquired at a higher altitude 
(more than 20 m) to cover the entire structures while maintaining the optimum pixel/ground distance ratio. Figure 4 shows 
the collection of optical images and thermal images at different acquisition distances. Note that during all the flights, images 
were captured with approximate 70% front and side overlap. This is to ensure that the orthomaps are generated without any 
difficulties. 

Last sets of flights were conducted using Niricson’s proprietary acoustic sensor. The payload was about 1 kg. Over 600 data 
points were collected on the predefined grid. Figures 5 and 6 show the collection of acoustic data points on the predefined 
grid. Each acoustic data point was collected in about 15-20 seconds. The average flight time for each acoustic flight was 
about 30 min. 
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Figure 4 Automated Data collection- Optical images 

and Thermal images 

 
Figure 5 Acoustic data collection on a 

spillway slab  
Figure 4 Acoustic data collection 

on a spillway pier 
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3. analysis, results, anD DisCussion 90 

The collected data was analyzed using Niricson’s proprietary software platform. The results are categorized in two different 91 
parts; surface defects and subsurface defects. Defects such as Alkali Silica Reaction, Floor joint failure, Spalling, Cracks with 92 
Minor sign of efflorescence, Transverse cracks, Longitudinal cracks, Diagonal Cracks, Cracks with multiple branches, Water 93 
Leakage at floor joints and side walls, and Vegetation were detected and quantified as show in Figures 7. To visualize the 94 
defects easily and perform the risk assessment, they were categorized and labeled with different colors. The example criteria is 95 
given below,  96 

 97 
Green: average width < a mm 98 
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3. ANALYSIS, RESULTS, AND DISCUSSION
The collected data was analyzed using Niricson’s proprietary software platform. The results are categorized in two different 
parts; surface defects and subsurface defects. Defects such as Alkali Silica Reaction, Floor joint failure, Spalling, Cracks 
with Minor sign of efflorescence, Transverse cracks, Longitudinal cracks, Diagonal Cracks, Cracks with multiple branches, 
Water Leakage at floor joints and side walls, and Vegetation were detected and quantified as show in Figures 7. To visualize 
the defects easily and perform the risk assessment, they were categorized and labeled with different colors. The example 
criteria is given below, 

	 Green: average width < a mm

	 Yellow: a mm <= average width <= b mm

	 Red: b mm < average width

	 Where a and b are the threshold values of the average crack width. 
Page 3 of 8 
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Fig. 7 : Concrete defects localization with different colors

As an example, each type of defects with their defects ID are shown in Table 1 below, 
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Table 1 Example showing surface defects with their IDs and quantification 108 

observation Defect 
iD gPs lat. gPs lon. 

min. 
width 
(cm) 

max. 
width 
(cm) 

ave. 
width 
(cm) 

length 
(cm) images (scale to fit) 

Appeared as 
white 

patches/cracks- 
Possibly due to 

Alkali Silica 
Reaction (ASR) 

1 49.2859 -122.4878 3.4 24.0 11.5 75.5 

 

Cracking (CRK) 2 49.2859 -122.4878 0.1 0.3 0.2 76.6 

 

Potential 
Leakage or 

Seepage (SPG) 
3 49.2859 -122.4878 N/A 

 
 109 

In order to detect and quantify the subsurface defects (mainly delamination/voids/reduction in the compressive strength), 110 
the collected audio signals were processed using the software. The cut-off frequency of 300 Hz was used to eliminate 111 
unnecessary surrounding noise. The Frequency spectrums were converted into Weightage Average Frequency (WAF) to 112 
categorize them into different condition levels. The different points with their color are shown in Figures 8 and 9.  113 

 114 
WAF = (P1*f1+P2*f2+P3*f3…….Pn*fn)/(P1+P2+P3……Pn) 115 
 116 
Where P1, P2....Pn are the power intensities related to the sound signal and f1, f2...fn are the frequencies. 117 
 118 
Condition Level Criteria (Example only),  119 
 120 
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In order to detect and quantify the subsurface defects (mainly delamination/voids/reduction in the compressive strength), 
the collected audio signals were processed using the software. The cut-off frequency of 300 Hz was used to eliminate 
unnecessary surrounding noise. The Frequency spectrums were converted into Weightage Average Frequency (WAF) to 
categorize them into different condition levels. The different points with their color are shown in Figures 8 and 9. 
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Where P1, P2....Pn are the power intensities related to the sound signal and f1, f2...fn are the frequencies. 
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Color → Red → WAF < 2500, Requires attention and further verification
Color → Green → WAF > 6000, May not require attention
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Fig. 8 : Acoustic points with condition levels – Spillway floor slab
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Fig. 9 : Acoustic points with condition levels – Concrete Arch Dam

The frequency distribution Example is given in Figure 10 below. 
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Fig. 10 : Frequency Distribution of the collected Acoustic Signatures

WAF distribution is also shown in Table 2 using different colors. Table 3 includes the audio signals from the two condition 
levels; 1. No indications of concern; may not require further attention and 2. Indications of low strength or deterioration; 
may require further attention and verification. 

Table 2 : Weightage Average Frequency (WAF) Distribution (Example Only) 
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 134 
Table 3 Frequency signals showing deteriorated concrete and sound concrete 135 

location#/ 
Condition 

level 
frequency [hz] intensity spectrum 

1/Green 

2235 160 

 
Weightage Average Frequency- 5613 

3359 60 

4600 267 

7289 54 

11116 72 

34/Red 370 433 

 
Weightage Average Frequency- 2160 

 136 
In order to validate the area requiring attention and further verification (“Red area”)  compared to the area requiring no 137 

attention (“Green area”), the concrete core samples were extracted as shown in Figure 11 and Figure 12. Core samples were 138 
extracted from “Green” location with Condition Type- “No indications of concern; may not require further attention” and “Red” 139 
location with Condition Type “Indications of low strength or deterioration; may require further attention and verification” for 140 
comparison.  141 

 142 

1632
2160 5131 5426 5552 5704 5961 6197 6888
3477 5247 5447 5573 5715 5964 6244 6922
4632 5268 5462 5573 5718 6048 6309 7299
4904 5279 5484 5613 5848 6049 6368
4985 5353 5487 5630 5896 6132 6429
5027 5356 5506 5668 5909 6164 6522
5111 5373 5539 5681 5933 6182 6690
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Figure 11 Concrete core from “Green area” 

 
Figure 12 Concrete core from “Red area” 

 143 
A third-party engineering firm was hired to test the core samples and verify the results presented. The compressive strength 144 

of the core sample in the “Red area” was found to be quite low compared to the core sample which was taken from the “Green 145 
area”. From the drawings, the slab that core sample (“Red area”) was drilled from, is found to be much older than the slab that 146 
core sample (“Green area”) was drilled from. These findings validate the inspection results presented in Niricson’s preliminary 147 
assessment report. 148 

4. limitations 149 
 150 

The work outlined here is a preliminary assessment of concrete damage of the spillway and concrete Arch Dam structure. 151 
The results obtained were intended to provide assistance to the  asset owners’ and inspection engineers to make necessary 152 
decisions related to repair and rehabilitation work by properly assessing the risk associated with the defects. The results were 153 
not recommended to be treated as an engineering assessment. As some portion of the spillway floor slab was submerged in the 154 
water, results of the quantification of the surface defects were affected.  155 

 156 
5. ConClusion 157 

 158 
The concrete defect detection and quantification software paired with the data collection technology were successfully 159 

implemented on a hydro dam spillway structure and a concrete arch dam. The surface and subsurface defects analyzed using 160 
the Niricson software were in-line with the manual field investigation. The technology-based data collection and processing 161 
was found to be much faster, accurate, precise, cost-effective and in-line with the manual inspection results. The asset owners 162 
can utilize this data as a baseline for all the future investigations as the data demonstrates very high repeatability. Periodic 163 
assessment using this technology can allow for a better risk assessment of large hydro dam assets and predictive maintenance 164 
framework.  165 
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	F ig. 11 : Concrete core from “Green area”			            Fig. 12 : Concrete core from “Red area”

A third-party engineering firm was hired to test the core samples and verify the results presented. The compressive strength 
of the core sample in the “Red area” was found to be quite low compared to the core sample which was taken from the 
“Green area”. From the drawings, the slab that core sample (“Red area”) was drilled from, is found to be much older than the 
slab that core sample (“Green area”) was drilled from. These findings validate the inspection results presented in Niricson’s 
preliminary assessment report. 

4. 	LIMITATIONS
The work outlined here is a preliminary assessment of concrete damage of the spillway and concrete Arch Dam structure. 
The results obtained were intended to provide assistance to the asset owners’ and inspection engineers to make necessary 
decisions related to repair and rehabilitation work by properly assessing the risk associated with the defects. The results were 
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 128 
WAF distribution is also shown in Table 2 using different colors. Table 3 includes the audio signals from the two condition 129 

levels; 1. No indications of concern; may not require further attention and 2. Indications of low strength or deterioration; may 130 
require further attention and verification. 131 
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Table 2 Weightage Average Frequency (WAF) Distribution (Example Only) 133 

 
       

        

        

        

       
 

       
 

       
 

 
 

      
 

 134 
Table 3 Frequency signals showing deteriorated concrete and sound concrete 135 

location#/ 
Condition 

level 
frequency [hz] intensity spectrum 

1/Green 

2235 160 

 
Weightage Average Frequency- 5613 

3359 60 

4600 267 

7289 54 

11116 72 

34/Red 370 433 

 
Weightage Average Frequency- 2160 

 136 
In order to validate the area requiring attention and further verification (“Red area”)  compared to the area requiring no 137 

attention (“Green area”), the concrete core samples were extracted as shown in Figure 11 and Figure 12. Core samples were 138 
extracted from “Green” location with Condition Type- “No indications of concern; may not require further attention” and “Red” 139 
location with Condition Type “Indications of low strength or deterioration; may require further attention and verification” for 140 
comparison.  141 

 142 

1632
2160 5131 5426 5552 5704 5961 6197 6888
3477 5247 5447 5573 5715 5964 6244 6922
4632 5268 5462 5573 5718 6048 6309 7299
4904 5279 5484 5613 5848 6049 6368
4985 5353 5487 5630 5896 6132 6429
5027 5356 5506 5668 5909 6164 6522
5111 5373 5539 5681 5933 6182 6690

In order to validate the area requiring attention and further verification (“Red area”) compared to the area requiring no 
attention (“Green area”), the concrete core samples were extracted as shown in Figure 11 and Figure 12. Core samples 
were extracted from “Green” location with Condition Type- “No indications of concern; may not require further attention” 
and “Red” location with Condition Type “Indications of low strength or deterioration; may require further attention and 
verification” for comparison. 
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not recommended to be treated as an engineering assessment. As some portion of the spillway floor slab was submerged in 
the water, results of the quantification of the surface defects were affected. 

5. 	 CONCLUSION
The concrete defect detection and quantification software paired with the data collection technology were successfully 
implemented on a hydro dam spillway structure and a concrete arch dam. The surface and subsurface defects analyzed using 
the Niricson software were in-line with the manual field investigation. The technology-based data collection and processing 
was found to be much faster, accurate, precise, cost-effective and in-line with the manual inspection results. The asset 
owners can utilize this data as a baseline for all the future investigations as the data demonstrates very high repeatability. 
Periodic assessment using this technology can allow for a better risk assessment of large hydro dam assets and predictive 
maintenance framework. 
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