

SMART AND SUSTAINABLE UTILITIES Communication, Infrastructure Technology And Testing Solutions

Points Covered

- Meter Over The Ages
- Testing Of Smart Meters In India
- Smart Meter Functional Zones
 - Metrology
 - Load Switch
 - Metering Protocol
 - Communication Module

Points Covered

- Case Study The German Approach
- Intelligent Measuring System
- Objective Of iMSys
- Rollout Plan for iMSys
- Sample Project On iMSys
- Futuristic Requirements
- Conclusion

Meter Over The Ages

Meter Over The Ages ...

1979 Single Phase Meter, dynamic; Electormechanical meter and register(mechanical drum type register) Watt hour Meter

1991 Hybrid meter Electonic meter and electromechanical register (mechanical dru-type reigter)

1994 Current transformer meter, hybrid electromechanical meter, electronic data processing

1996 Current transformer meter, fully electronic , with a complex tariff structure

2009 Smart Threephase current meter, electronic; Electronic meter and register, simplified tariff structure, telecontrolled switch

Testing of Smart Meters In India

- Available Standards: IS 16444:2015
- Smart meters functional zones
 - a) Metrology
 - b) Load switch
 - c) Metering protocol
 - d) Communication module

Metrology

Metering and metrology requirement shall be according to IS 13779 and IS15884 (specific conditions).

□ Following tests are included -

- Insulation properties
- Accuracy requirement
- Electrical requirements
- Electromagnetic compatibility
- Climatic influence
- Mechanical requirement

LOAD SWITCH

Switching element to connect/disconnect the flow of electricity to the load.

Testing of Load Switch

Performance requirement for load switch is as per 4.6.6.2 of IS 15884.

"The load switch shall be designed and rated to make and break at Vref, Imax with a linear resistive load and at Vref, Ib,0.4 inductive power factor for 3000 operations".

ZERA Methodology for Testing of Load Switch

- Load switch capabilities can be tested by sending commands to the meter to make and break contact and measuring the resistance across the load switch contact.
- The methodology requires following capabilities in the test system
 - a) Communication with meter Catered by DLMS/ proprietary protocols
 - b) Detecting the state and counting Intelligent Isolation current transformer can detect on the basis of resistance at individual meter place

Methodology for Testing Load Switch ...

For ex. **RcLosed** Ohm defined for close contact and **Ropen** ohm defined for open contact then the measured value of resistance across the load switch less than or equal to **RcLosed** Ohm treated as close circuit and more than or equal to **Ropen** Ohm treated as open circuit

Methodology for Testing Load Switch

Data Exchange Protocol

- □ Testing requirement as per IS15959 (part 1,2 and 3)
- Application layer protocol primarily DLMS/COSEM shall work with other layers of communication.
- Conformance testing tool (CTT) is used and the testing shall be done by accredited laboratory and having membership with DLMS UA
- □ Conformance testing is defined vide Annex K of IS 15959.

1		Use GBT	About	Refresh	Description Filte	r
0	O Connected Gi	BT Window size 3 🔄	Help	Class 👻	OBIS/Attr/Method	Value
-				8 -17	0.0.41.0.0.255	SAP Assignment
e	20,16,03	22 12 12 18		⊕ 15	0.0.40.0.0.255	Current association
				8 64	0,0.43.0.0.255	Security setup
COC		Manual load	Actual inc.	雨 1	0.0.43.1.1.255	Security - Receive frame counter - broadcast key
	8 H I H		FE AN AN	8 1	0.0.43.1.0.255	Security - Receive frame counter - unicast key
			3046 W	8-1	0.0.42.0.0.255	COSEM logical device name
Erent	E Clock invalid (9	(heatons)		8-1	0.0.96.1.0.255	Device ID 1, manufacturing number
CABIE	BIE A COOK ELLING (Manchand)			8-1	0.0.96.1.1.255	Device ID 2
Push	Push setup - Interval 1 (0.1.25.5.0.255) *		8-1	0.0.95.1.2.255	Device ID 3	
		Fact 1999 1999 1999 1999 1999 1999	9107-120E	8-1	0.0.96.1.3.255	Device ID 4
	Authentication key	30415263748596A7B8C9DAEBF	C001E2F	8-1	0.0.96.1.4.255	Device ID 5
	Encryption key	2031425364758697A889CAD8E	CFD0E1F	18-1	0.0.96,1.5.255	Device ID 6, IDIS certification numb
Master key		10211243546576929944984CR0CEDEE0E		8-1	0.0.96.14.0.255	Currently active energy tariff
		1021324334637667364364666	CLUTEN	8.8	0.0.1.0.0.255	Clock
	HLS Secret	0123456789ABCDEF		8-1	1.0.0.9.1.255	Local time
				8-1	1.0.0.9.2.255	Local date
1 -				18-3	1.0.0.9.11.255	Clock Time Shift Limit
Connector 0.0.96.3.10.255			0.9	0.0.10.0.100.255	Tariffication script table	
				8-9	0.0.10.0.1.255	Predefined Scripts - MDI reset / end of billing period
1			18-22	0.0.15.0.0.255	End of billing period 1 scheduler	
			B 7	0.0.98.1.0.255	Data of billing period 1	

Test Equipment Requirement

□ Power up energy meter.

□ Integrate external CTT and report can be generated \rightarrow powerful application software of energy meter test system is required.

Communication Requirement

The communications between a Smart meter and DUC (Data Concentrator Unit), HES (Head End System) and IHD (In Home Display) are established either by wired or wireless communication technology. Guidelines for PLC, WAN, RF Technology and communication layer protocol as per IS 15959.

Communication Requirement...

Communication should achieve following points -

- A secure and reliable connection between the devices
- Reliable delivery of packages
- Repeatedly sending non-incoming packets
- Ensuring an error-free transmission
- To merge incoming data packages in the correct order
- The prevention of the reading by unauthorized third parties (by encryption)
- Preventing manipulation by unauthorized third parties (electronic signatures)

CASE STUDY - The German Approach

CASE STUDY – The German Approach

□ The Energy Transition in Germany

Year	Electricity generation from renewable energies
2020	30 – 35 %
2025	40 – 45 %
2035	55 – 60 %
2050	80%

Intelligent Measuring System

Intelligent measuring systems(iMSys)

Intelligent Measuring System ..

- □ The intelligent measuring system consists of –
- 1) Basic meter Digital and modern electricity.
- 2) Smart Meter Gateway (SMGw).
- 3) Controller box– For smart network control.

Rollout Plan For iMSys

- Federal office for Information security (BSI) Developed Technical Guidelines – BSI TR-03109
- Physically-Technical Federal Agency (PTB) Formulated Guideline for iMSys(PTB-A 50.8 and 50.7)

Year	Rollout plan for iMSys (MS2020)
2017 – 2024	All consumers > 20,000 kWh + producer > 7 kWh
2019 – 2026	All consumer > 10,000 – 20,000 kWh
2021 – 2028	All consumer > 6,000 – 10,000 kWh

Sample Project On iMSys

Smart Meter with 3 interfaces:

- Multi Utility interface
- Customer interface
- WAN interface

Kind of interfaces:

- Optical interface (IF 1)
- Wired interface

 → M-Bus or RS485 (IF 2)
 → PLC G3 (IF 3)
- Wireless interface (IF 4)

Data protocol: DLMS/COSEM

Encrypted data communication

Testing the whole communication line

Connection to the IT backend system

KoaLa GUI

ZERA Implementation Of Smart Meter Projects

Germany: iMsys (Basic Meter + SMGw + CB)

- > 20 German power and utility companies
 - Meter manufacturer (devolo in Aachen)

Austria: iMg (Intelligent measuring instrument)

- Smart Meter West (Salzburg, Innsbruck, Bregenz)
- Energy Steiermark (Graz)
- Utility Klagenfurt
- 3 Further projects will follow in Germany and Austria

Projects will also come up abroad (pilot projects are running almost in all countries)

1

2

4

Futuristic Requirements

- Detailed specification/standards shall be available for smart meter test system.
- Infrastructure /laboratories shall be developed to test the smart meters.
- Experience and methodology so far used in EU and world wide shall be studied and modified accordingly to suit the requirement of the India market.

Conclusion

If utilities want to ensure intelligent, efficient and sustainable supply, the use of renewable energies is a key step towards achieving the goal, coupled with the necessary measures to digitize all processes. We also require **suitable test systems** to test and verify each part of the intelligent measuring system.

For the introduction and implementation of Smart Meter projects

we are at your disposal at any time

