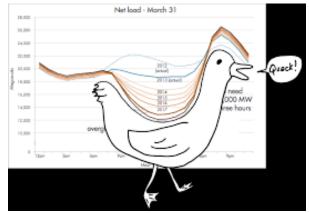
What brings smartness- smart meter/ smart analytics

CBIP Workshop on Technical and Testing Challenges for Smart Meters

2-3 Nov 2017, New Delhi

Dr. Anukram Mishra

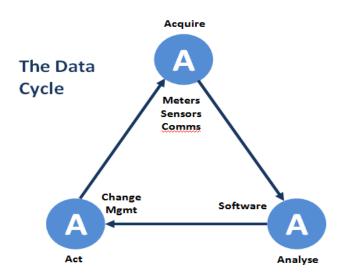
Genus Power Infrastructures Limited



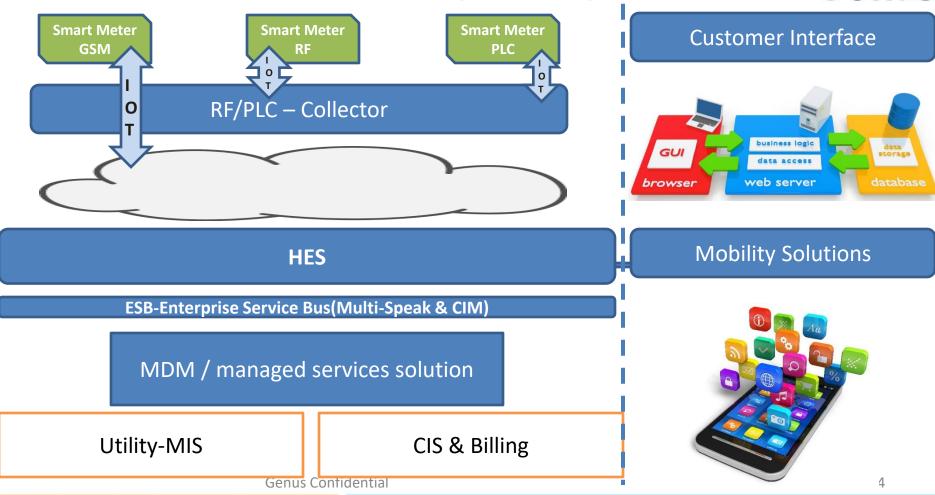
Contents

What brings smartness- smart meter/ smart analytics

- Let's understand smart meter
- Benefits to utility and consumers
- Linking smart meter data with end use
- Interval data and its importance
- Smart data analytics
- Proposed innovations
- Conclusion



Let's understand


Additional functionalities in smart meter

- Two way communication
- Connect/ disconnect

Smart Utility Landscape

Utility: Loss/Utility operational efficiency improvement

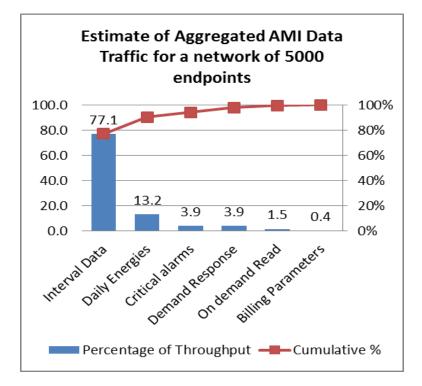
Benefits of smart metering

- Active tracking of suspicious/ inactive meters and theft in real time, use of analytics
- Control of renewable integration, export only when utility needs it
- Enforcement of sanctioned load limit, IS 16444, Cl. 11.1, 11.2
- Improved and mistake-proof billing processes and efficiency, post and prepaid options
- Faster consumer complaint response time due to outage detection
- Customer service connection/disconnection convenience, saves efforts and time

Consumer and Societal Benefits

- Safety features against shock hazard, fire hazard
- DSM, flattening of peak demands, reduction in outages, personal energy management
- Smart In-home Systems to provide energy information and consumption feedback
- Lower Energy Bills by shifting consumption to off-peak periods and by conservation

Smart meter data and smart data analytics can be very useful for consumers



Linking smart meter data with end use

Problem in Power Distribution	Resolution by AMI	AMI Data for Analytics	
AT &C Losses	Timely energy accounting, Theft alarms, Billing efficiency	Critical Alarms, Interval Data, Daily Profile, Billing Profile	
Un-availability of Power	Better Forecast based on interval Interval Data data, Loss control		
Growing Peak Demands	Time of use (TOU) tariff, demand TOU tables, Demand Response		
Energy Inefficiency	'var' and voltage control	On demand read of tail end and DT meters	
Quality of Power	Outage management, asset management	Interval Data and alarms from DT meters	
Integration of Green Energy	Availability based micro generation- storage, net metering	Interval Data, Daily data and Billing data from net meter and solar generation meter	

Interval data constitutes 77% of total throughput

Interval data is like omni bus

Genus Estimated smart meter data throughput for India

	Message transaction rate /s	APDU size (Bytes)	77% Throughput per meter Bytes /day	100% Throughput per meter Bytes/ day
Europe, P2P case study	0.463 exp (-04)	725	2900	3766
USA, W16 case study	1.1exp(-04)	2017	19169	24894
Proposed for India	0.694 exp(-04)	402	2410	3130

Problem of abundance

Data is the new oil(?!)*

*Provided data is designed SMART

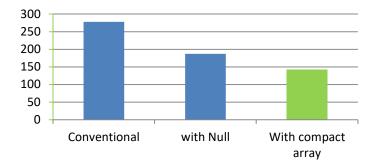
SMART Data, Block load profile IS 15959 (Part 2)

- **S**pecific
- Measurable
- Accurate
- **R**esult oriented
- **T**imely

Interval data 1.0.99.1.0.255	Use, different capture parameters for different meters
kWh import	Real time energy accounting, modelling, forecasting
kWh export	Real time energy accounting, modelling, forecasting
*Abnormality flags	Need to incorporate for safety features (overload, temperature, leakage, outages, low signal strength, internet not connected etc.) for conservation of AMI traffic

*There is a strong justification for a debate to re-design the interval data profile Proposal to add abnormality flags

Genus Confidential



Smart use of DLMS: APDU Data Compression

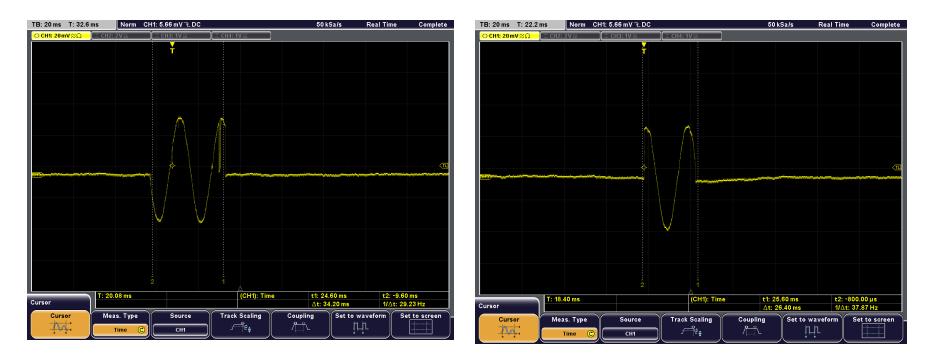
Example Load Profile reading from 1P Meter for 8 IP with 6 channels

including RTC as per IS 15959 part 2,

1.0.99.1.0.255

Bytes in APDU	Conventional Method		With Compact Array* and null vector for next RTC
Bytes to be sent by Meter	278 (100%)	187 (67%)	142 (51%)

*After taking up with DLMS UA, support of compact array is now included in CTT



Proposal to add more '**Push'** profiles in IS to reduce unnecessary data traffic, conserve resources and improve reliability

Profile	Push frequency	Time division
Interval data compact array	5 minutes to 4 hours (array of last 4 hour intervals) depending on type of meter	5 min slots for TDM
Daily energy registers	At midnight	5 min slots for TDM
Billing data	On billing date at midnight	5 min slots for TDM

Safety feature, PoC to demonstrate smart meter as RCCB

RCCB, trip time 34.2ms

Smart Meter, trip time 26.4ms

Smart meter as MCB (short circuit protection)

www.shutterstock.com - 609579908

CENOE

Smart meter can prevent short circuit fires

*With use of PGA's management it is possible to detect short circuit from overload in mere 60ms

Conclusion

- Smartness lies in the information sent in AMI data for each end -use
 - **S**pecific
 - Measured
 - Accurate
 - Result oriented—mapped to the end use
 - **T**imely
- AMI data and push profiles need to be designed intelligently to meet SLA's. Alarm flag addition in interval data, smart data compression within DLMS framework
- Smart features can be added in smart meters to provide safety and transparency to consumers through mobile Apps
- Smart analytics is the name of the game today

Thanks for your attention

LUCK IS WHAT HAPPENS WHEN PREPARATION MEETS OPPORTUNITY -SENECA

Genus Confidential